Качественный уровень строящихся и ремонтируемых дорожных объектов в России за последние годы заметно подрос. И во многом благодаря лучшему и более грамотному выполнению работ по уплотнению земляного полотна‚ щебеночного основания и асфальтобетонного покрытия.

Успеху способствовали внедрение новой уплотняющей техники и более эффективной технологии‚ рост знаний и практического умения ИТР и рабочих многих подрядчиков и исполнителей‚ в числе которых можно упомянуть и объединение «Дорстройпроект»‚ признанное победителем конкурса Росавтодора в 1999 году и лучшим дорожным подрядчиком России по итогам конкурса Госстроя РФ в 2000 году.

Позитивные подвижки по качеству уплотнения используемых материалов обнажили в то же время накопленные за предыдущие годы и еще нерешенные проблемы‚ задачи и вопросы‚ в том числе достаточно острые‚ по совершенствованию норм и обновлению методов и технических средств контроля качества уплотнения. И это относится как к земляному полотну и асфальтобетонному покрытию‚ так и‚ особенно‚ к щебеночному основанию.

Критический обзор и анализ‚ в сравнении с передовыми зарубежными нормами‚ методами и средствами такого контроля‚ демонстрирует явный консерватизм развития и показывает российское отставание лет на 15. Причем оно касается‚ главным образом‚ методов и средств прежде всего оперативного полевого контроля. По нормам тоже есть серьезные проблемы и недоработки‚ но они‚ в основном‚ по щебеночным основаниям‚ хотя и по земляному полотну и асфальтобетонным покрытиям следовало бы также кое-что уточнить и подправить.

В основу оценки качества уплотнения грунта земляного полотна и подстилающего слоя в России‚ как известно‚ положен принцип сравнения плотности‚ полученной в насыпи или выемке‚ с плотностью того же грунта в лабораторном приборе стандартного уплотнения СоюздорНИИ (в зарубежных странах – в приборе Проктора). Результат сравнения в виде коэффициента уплотнения (Ку) «примеряют» к нормируемым ГОСТ и СНиП его значениям‚ чаще всего равным 0‚95 (низ земляного полотна) или 0‚98–1‚0 (верх земляного полотна и подстилающий слой).

Сравнение действующих в дорожной отрасли российских норм уплотнения грунтов с зарубежными подтверждает достаточный их уровень для обеспечения прочности и устойчивости земляного полотна. На всех объектах‚ где они соблюдаются‚ проблем из-за деформаций и просадок земляного полотна практически не бывает.

Изредка возникающие критические «наскоки» на них с предложениями подправить или даже с требованиями пересмотреть в сторону ужесточения неправомерны‚ необоснованны и даже вредны. Конечно‚ что-то можно и нужно уточнить и изменить с учетом климатического фактора‚ опыта работы в земляном полотне различных типов и состояний грунтов и новых возможностей уже более мощных и совершенных грунтоуплотняющих средств. Однако «резкие движения» в направлении кардинального пересмотра норм делать опасно и не нужно.

Стандартный метод оценки качества уплотнения предусматривает обязательный отбор порции или образца грунта с помощью кольца или лунки‚ точное его взвешивание‚ определение влажности путем высушивания при 105–110°С в термостате в течение 6–8 часов. Затем нужно в лаборатории выполнить процедуру стандартного уплотнения предварительно высушенного и измельченного грунта со столь же продолжительным определением оптимальной влажности.

В итоге интересующий коэффициент уплотнения грунта и его влажность могут быть выданы производителю земляных работ минимум через сутки-двое‚ когда поправить качество уплотнения бывает сложно‚ а порой уже и невозможно.

Правда‚ облегчают или спасают эту ситуацию две альтернативные возможности. Во-первых‚ россияне часто используют распространенный во многих странах метод контроля не самой плотности грунта‚ а технологии его уплотнения выбранным средством‚ установленной‚ например‚ при пробном уплотнении. Строгое соблюдение технологических режимов выполнения этой операции‚ как правило‚ гарантирует высокую вероятность получения требуемого результата по качеству. Поэтому обязательный отбор проб грунта из насыпи или выемки вместе с лабораторными процедурами можно рассматривать не как оперативный контроль‚ а как проверочный и не имеющий столь острой необходимости сиюминутной выдачи результата. Однако при возможном изменении типа и разновидности грунта или его состояния‚ чего исключать нельзя‚ такой метод контроля может давать сбои.

В подобном и других случаях дорожники широко используют вторую возможность‚ дающую им узаконенное СНиП право проводить контроль плотности с обязательным отбором проб грунта в объеме‚ составляющем не менее 10% от всех положенных измерений. В остальных 90% допускается применять косвенные методы и средства‚ в том числе и упрощенные‚ но обеспечивающие соответствующую достоверность результатов.

Подобные приборы и устройства‚ порой достаточно простые и легкие‚ удобные и дающие быстрый результат (экспресс-приборы)‚ очень полезны и нужны дорожной отрасли.

Из имеющегося многообразия этих приборов и методов наиболее распространенными и применяемыми во многих странах оказались так называемые плотномеры-пенетрометры статического и динамического типа. Только в России в разных отраслях строительства можно насчитать не менее десятка действующих их образцов. Кстати‚ уместно напомнить‚ что с помощью одного из таких плотномеров-пенетрометров в сочетании с крыльчаткой автоматические спускаемые аппараты СССР изучали на Луне свойства ее грунта‚ а американские войска прямо с воздуха оценивали несущую способность грунта Земли для посадки самолетов и вертолетов.

Одним из первых подобных плотномеров-пенетрометров‚ использовавшихся проф. Зелениным А. Н. еще в середине истекшего столетия для выявления корреляционной связи между сопротивлением грунта резанию и его плотностью‚ был плотномер ДорНИИ (рис. 1)‚ более известный под названием «ударник ДорНИИ» (от прибора стандартного уплотнения). Правда‚ в те уже далекие времена он еще не назывался пенетрометром.

Привлекательность его состояла в простоте конструкции‚ удобстве применения и быстроте получения результата. Да и сам критерий оценки плотности был прост и понятен всякому: количество ударов груза 2‚5 кгс‚ падающего с высоты 40 см‚ необходимое для погружения в грунт на глубину 10 см цилиндрического стержня с площадью основания плоского наконечника 1 см2 (для слабых и рыхлых грунтов был второй наконечник с площадью 2 см2).

По количеству таких ударов и заранее построенному тарировочному графику с учетом типа грунта и его влажности можно было быстро найти К у и решать вопрос о качестве уплотнения земляного полотна. Причем делать это можно в процессе выполнения самой операции‚ корректируя технологические режимы работы грунтоуплотняющих машин и соответственно результат по качеству.

Современные плотномеры-пенетрометры‚ несмотря на солидность подведенной научной базы‚ усложнение методологии измерений отдельными их образцами (двойная пенетрация‚ совмещение тарировки по К у и влажности и др.) и накопленный практический опыт использования‚ мало отличаются по своей сути от «ударника ДорНИИ» и друг от друга. Это отличие состоит в основном в форме и размерах наконечника (чаще всего конус с углом при вершине 30‚ 45 или 60°)‚ способе погружения наконечника (статическое задавливание или серия ударов) и измеряемой величине‚ служащей критерием оценки качества уплотнения.

За критерий принимают либо удельное сопротивление погружению конуса (cone index)‚ определяемое как отношение общего статического или динамического усилия вдавливания к площади основания конуса‚ либо глубину погружения наконечника‚ либо количество ударов для погружения его на заданную глубину. При этом все другие параметры прибора‚ кроме одной из названных и фиксируемых величин‚ остаются постоянными.

Опыт применения таких приборов выработал ряд особых условий и требований‚ только соблюдение которых может дать устойчивый и приемлемый по точности результат. В частности‚ плотномеры-пенетрометры статического типа (рис. 2) порой требуют солидного усилия задавливания зонда-наконечника (на плотных связных грунтах до 50–60 кгс)‚ а также равномерного и плавного его погружения на глубину до 10 см в течение 15–20 сек. (от этого зависит величина усилий).

Это не всегда и не всякий мужчина способен обеспечить‚ не говоря уже о девушках и женщинах-лаборантах. Это же‚ видимо‚ является причиной разброса результатов измерений и негативного отношения к статическим пенетрометрам некоторых специалистов дорожной отрасли.

Проще‚ надежнее и легче работать с динамическими плотномерами. Объединение «Дорстройпроект»‚ в состав которого входят 7 дорожно-строительных и ремонтных фирм‚ при оценке качества устройства земляного полотна из песчаных грунтов‚ в том числе одноразмерных‚ на протяжении ряда лет применяет для экспресс-оценки качества их уплотнения динамический плотномер типа Д-51 (рис. 3)‚ который ни разу нас не подводил.

Лет 20 назад бывший тогда Минавтодор РСФСР организовал во Владимире сопоставительные испытания 9 различных приборов для контроля качества уплотнения связных и несвязных грунтов. В их числе были 6 статических и динамических плотномеров-пенетрометров.

По результатам этих одновременных испытаний для дорожных грунтовых объектов были рекомендованы в основном динамические плотномеры Д-51 и РБ-102А (песчаные грунты) и плотномер-влагомер Н. П. Ковалева (грунты связные). Последний‚ правда‚ трудно отнести к простым в практическом плане и экспрессным приборам.

Статические пенетрометры‚ хотя и не выдержали испытаний‚ иногда могут с пользой применяться для относительных оценок состояния отдельных мест и участков земляного полотна по принципу хуже/лучше.

Что касается влажности уплотняемых мелкозернистых грунтов‚ то ее контроль всегда осуществляется наиболее надежным и точным термовесовым способом в лабораторных условиях. Ничего лучшего пока не придумано и не предложено взамен этой простой‚ но длительной процедуры. Правда‚ в свое время в лаборатории технологии и механизации Ленфилиала СоюздорНИИ было создано устройство‚ названное «вертушкой»‚ для более быстрой сушки навески грунта в бюксе (1–1‚5 часа вместо 6–8 часов).

Основным узлом этого простого прибора был обычный проигрыватель пластинок с 33‚ 45 или 78 оборотами в минуту. На его диск с боковыми буртиками устанавливалось 12–15 бюксов с влажным грунтом. Сверху на оптимальном расстоянии‚ найденном опытным путем из условия температуры у грунта 105–110°С‚ помещался обычный с вогнутой отражательной тарелкой рефлекторный электронагреватель‚ который за счет вращения бюксов выполнял весь цикл сушки всего за 1–1‚5 часа.

Это легкая‚ компактная‚ недорогая и удобно транспортируемая «вертушка» вместе с сотрудниками лаборатории побывала на дорожных стройках Западной Сибири‚ БАМа‚ Латвии‚ Молдавии и других мест.

Достаточно оперативные результаты по влажности и плотности грунтов дают радиометрические методы и приборы. Их с успехом и давно применяют в США‚ Франции‚ Англии‚ Германии и других странах. Особенность современных образцов плотномеров такого типа состоит в том‚ что значительно повысилась безопасность работы с ними (используются излучающие элементы низкой радиоактивности) и что они оснащены микрокомпьютерами для вычисления и выдачи сразу значений влажности‚ плотности и К у грунта. Правда‚ они нуждаются в тарировке по каждому виду грунта и очень чувствительны на включения в грунте камней. В России и других странах‚ входивших в состав СССР‚ где еще жив «чернобыльский синдром»‚ трудно пока надеяться на преодоление психологического страха и внедрение радиоизотопных методов и приборов у дорожников.

Особой заботы и беспокойства у дорожников качество уплотнения насыпей из прочных и добротных скально-крупноблочных грунтов почти никогда не вызывало. Хотя целый ряд практических примеров (пилообразный профиль БАМа‚ осадки покрытия до 20–30 см на одном из карельских участков автодороги Санкт-Петербург – Мурманск‚ неровности покрытия на первой очереди обхода г. Выборга и др.) свидетельствуют о возможных серьезных неприятностях‚ если самой операции и особенно контролю качества уплотнения таких грунтов не уделяется необходимого внимания.

Сегодня уплотнение скально-крупнообломочных грунтов не может быть проблемой с последствиями‚ так как имеются эффективные уплотняющие средства в виде тяжелых прицепных или шарнирно-сочлененных виброкатков и технологические приемы ведения работ. Проблемой‚ да и то относительной‚ можно считать контроль качества их уплотнения‚ ибо на таких грунтах плотномер-пенетрометр не применить‚ пробу грунта режущим концом или методом лунки не возьмешь. Правда‚ метод единичных лунок (объем до 6–8 см3) иногда использовался на ответственных отечественных и зарубежных гидротехнических стройках‚ но получаемую таким путем плотность не с чем было сравнивать‚ ибо трудно себе представить возможность выполнения общепринятого стандартного уплотнения грунта с твердыми включениями 100–300 мм. В некоторых случаях последнее заменяли уплотнением таких грунтов в формах увеличенных размеров (20–25 л) на вибростолах или поверхностными вибротрамбовками. Иногда в эти формы вместо реального грунта помещали модельный с последующим пересчетом результатов на реальный.

Categories: Без рубрики
9 Июн 2011

Нефтяной битум является общепринятым вяжущим для строительства и ремонта автомобильных дорог.

Однако‚ с технологической точки зрения‚ его следует применять при минимально возможной вязкости‚ что может быть достигнуто тремя принципиальными способами:

разогрев битума до технологических температур (горячий способ);
разжижение вязких битумов специальными‚ как правило‚ легкими растворителями;
эмульгирование битума в воде в присутствии специальных веществ (битумные эмульсии).

Первый способ используется обычно для производства горячих смесей с предварительным нагревом исходных минеральных материалов или розливом горячего битума на холодную поверхность при производстве подгрунтовки или устройстве поверхностной обработки. Этот способ имеет достоинства и недостатки. К достоинствам следует отнести возможность получения конгломерата (асфальтобетона) с высокой прочностью при использовании высоковязких битумов для дорог с тяжелым и интенсивным движением‚ а к недостаткам – затраты энергии на нагрев минеральных материалов при производстве горячих смесей‚ ограниченный период времени на устройство конструктивных слоев дорожной одежды и отрицательное воздействие на окружающую среду в процессе всего цикла производства работ.

Второй способ‚ как правило‚ дороже из-за весьма дорогостоящих растворителей‚ которые за относительно короткий период времени должны испариться‚ что приводит к загрязнению окружающей среды и к повышенной пожароопасности при производстве работ.

Третий способ‚ с использованием битумных эмульсий‚ не требует нагрева и может использоваться с холодными и даже влажными минеральными материалами‚ что позволяет снизить расход энергоносителей до 40% по сравнению с традиционными «горячими» технологиями.

Принципиальная схема производства битумной эмульсии

Эмульсия – неоднородная‚ термодинамическая неустойчивая система с двумя или несколькими жидкими фазами‚ представляющими одну постоянную жидкую фазу (дисперсионную среду) и‚ по меньшей мере‚ вторую жидкую фазу‚ рассеянную в первой в форме мелких капелек (дисперсная фаза). В зависимости от формы‚ битумные эмульсии классифицируются на прямые и обратные.

Прямые эмульсии – это когда битум в виде мелких капелек (от 1 до 20 мк) находится в водной среде.

Обратная эмульсия – это когда вода в виде мелких капелек находится в битумной среде.

В дорожной практике наибольшее применение находят прямые битумные эмульсии.

В зависимости от требуемых технологических и эксплуатационных свойств связующего материала эмульсии могут быть приготовлены на битумах различной вязкости как с использованием различных добавок (растворители‚ ПАВ‚ полимеры)‚ так и без них. При этом в зависимости от назначения и условий применения могут приготавливаться эмульсии с различной скоростью их распада и устойчивостью при транспортировке и хранении.

Относительно низкая вязкость прямых битумных эмульсий‚ обусловленная наличием водной среды (от 31 до 50%)‚ обеспечивает хорошую способность обработки каменных материалов без их сушки и нагрева. Такие технологические свойства битумных эмульсий обусловливают благоприятное их применение в дорожном строительстве с позиций охраны труда дорожных рабочих и охраны окружающей среды.

В зависимости от применяемых эмульгаторов эмульсии могут быть анионного и катионного видов. При этом за последние годы в мировой практике дорожного строительства производятся и используются главным образом (почти 100%) эмульсии катионного вида‚ как наиболее универсальные и обеспечивающие достаточную адгезию вяжущего к поверхности минеральных материалов кислой и основной природы.

За более чем 60-летний период производства битумных эмульсий катионного вида за рубежом в совершенстве отработаны различные составы и технологии их применения в дорожном строительстве и налажен промышленный выпуск большого ассортимента эмульгаторов для различных составов эмульсий применительно к их назначению.

Наибольший опыт в теоретических разработках и в практическом использовании битумных эмульсий накоплен во Франции‚ которая считается мировым лидером в этих вопросах и где более 30% от общего объема органических вяжущих для дорожных целей применяется в эмульгируемом виде.

В России в середине 60-х годов на основании научно-исследовательских работ и небольшого опыта практического применения были разработаны технические и нормативные документы по приготовлению и использованию битумных эмульсий в дорожном строительстве.

Однако главным образом эти документы отражали вопросы применения эмульсий анионного вида‚ так как химическая промышленность России и в целом Союза ССР не производила катионные эмульгаторы применительно к дорожному строительству. За весь этот период отечественной машиностроительной промышленностью не был налажен выпуск всего комплекта оборудования для эмульсионных баз‚ и только на энтузиазме отдельных специалистов и коллективов дорожников создавались такие базы для производства эмульсий анионного вида. За последние годы в условиях рыночных отношений и открытости границ в России и странах СНГ целый ряд дорожных организаций начал создавать базы по производству катионных битумных эмульсий‚ главным образом‚ на основе импортного оборудования с использованием импортных эмульгаторов. Наряду с этим‚ ряд наших заводов‚ и в частности АО «Дормаш» (г. Верхний Уфалей)‚ начал выпуск комплекта оборудования для приготовления битумных эмульсий.

Несмотря на то‚ что государственный стандарт на эмульсии битумные дорожные действует с 1982 года (ГОСТ 18659-81)‚ первые технические условия на промышленный выпуск отечественных эмульгаторов катионного вида для дорожных целей были разработаны в 1996 году фирмой «Дорос» (г. Ярославль) и фирмой ЗАО «Амдор» (Санкт-Петербург)‚ испытания проб которых показали их конкурентную способность по отношению к лучшими зарубежным аналогам.

Categories: Без рубрики
9 Июн 2011

В дорожной отрасли довольно часто встречаются неудобные‚ стесненные и относительно труднодоступные места для уплотнения грунтов‚ щебеночных материалов и даже асфальтобетонных смесей. К таким местам относятся различного рода подземные прокладки труб‚ коллекторов и кабелей в городских траншеях‚ водопропускных труб и газовых пересечек на загородных дорогах‚ места сопряжения мостов и путепроводов с дорожной конструкцией‚ пазухи у колодцев‚ опор и столбов‚ откосы насыпей и конусов под мостами и путепроводами.

На выполнении уплотнительных работ в таких местах не могут быть использованы крупные грунтоуплотняющие средства‚ применяемые при устройстве обычных насыпей‚ выемок‚ площадок или оснований. Их габариты и силовое воздействие зачастую не соответствуют размерам этих мест и условиям сохранности ответственных элементов и конструкций в них (трубы‚ кабели‚ опоры‚ плиты‚ балки и т. п.).

Во всем мире‚ в том числе и в России‚ грунты в стесненных‚ неудобных и труднодоступных местах уплотняют‚ как правило‚ малогабаритными средствами ударного и виброударного типа – ручными вибротрамбовками‚ виброплитами и виброкатками. Иногда используют также гидромолоты‚ навешиваемые на стрелу одноковшового экскаватора или специализированной машины. Методы и средства статического уплотнения практически не применяются ввиду их малой эффективности.

Общие функционально-технологические требования к грунтоуплотняющим средствам для подобных мест можно сформулировать в следующих нескольких положениях:

их габаритные размеры в плане‚ а иногда и по высоте‚ должны вписываться в размеры мест производства работ;
метод и средство уплотнения должны соответствовать типу и состоянию используемого грунта;
толщина уплотняемого слоя выбранного средства должна обеспечивать требуемое качество (нормативный коэффициент уплотнения) в отсыпаемом слое‚ предусмотренном технологией производства работ;
производительность уплотняющего средства (она разная у различных типов и моделей) должна соответствовать технологии и графику проекта производства работ (ППР).

Плотность грунтов в стесненных‚ неудобных и труднодоступных местах‚ находящихся в пределах проезжей части дорог и улиц‚ должна быть не меньше требуемых по СНиП для основной части насыпей и выемок – коэффициент уплотнения не меньше 0‚95 в нижней и 0‚98 в верхней части земляного полотна. Недоуплотнение влечет за собой всем известные существенные послепостроечные осадки грунта‚ с деформированием‚ а порой и разрушением не только дорогостоящих дорожных покрытий‚ но и ответственных инженерных сетей‚ элементов и конструкций.

Раньше‚ когда надлежащих эффективных методов и средств уплотнения в подобных местах вовсе не было или было мало‚ в некоторых случаях (узкие и глубокие траншеи‚ пазухи у труб‚ стенок и опор‚ откосы насыпей‚ одноразмерные пески и др.)‚ когда возможность реализации указанных норм уплотнения была затруднена‚ в порядке исключения допускалось некоторое понижение требуемых показателей плотности – до 0‚92–0‚95.

Сегодня такое снижение не предусмотрено и не допускается‚ хотя проблема уплотнения грунтов до 0‚95–0‚98‚ например на откосах насыпей‚ должным образом до сих пор не решена‚ и здесь негласно действует «узаконенное практикой» сниженное (до 0‚90–0‚92) значение коэффициента уплотнения‚ правда‚ подкрепленное эффективной технологией последующего укрепления откосов травосеянием.

В тех случаях‚ когда грунт в ряде стесненных‚ неудобных и труднодоступных мест не выполняет роль важного несущего или прочного элемента (траншеи и пазухи у труб‚ опор и колодцев в пределах тротуаров‚ велосипедных дорожек‚ газонов и разделительных полос)‚ его можно уплотнять в нижней и верхней части засыпки до 0‚93–0‚95 (под покрытиями тротуаров‚ дворов‚ парковок и дорожек) и до 0‚90–0‚92 (разделительные полосы‚ газоны).

Самыми малоразмерными‚ с точки зрения стесненности и неудобств ведения работ по уплотнению грунта‚ являются траншейные прокладки кабелей связи в наборе керамических‚ асбестовых или иных трубок диаметром 50–100 мм (глубина и ширина траншей в пределах 0‚5–1‚0 м при ширине боковых пазух не более 0‚2–0‚3 м). Конечно‚ для них нужны наименьшие по размерам вибротрамбовки и виброплиты (рис. 1).

Очень сложно в узкой траншее помимо основной засыпки уплотнять боковые пазухи. Видимо‚ поэтому одна из зарубежных фирм (Dynapac) предложила в свое время специальное приспособление к небольшой своей виброплите (вес 70 кгс) для одновременного уплотнения двух пазух у труб диаметром 150–300 мм (рис. 2).

Аналогичные сложности возникают при уплотнении узких пазух у столбов‚ колонн‚ стен и колодцев. С этой работой могут успешно справиться самые маленькие виброплиты (несвязные грунты) или ручные вибротрамбовки (связные и несвязные грунты) (рис. 3).

Траншейные прокладки газовых‚ тепловых‚ водопроводных и канализационных труб‚ как правило‚ шире и глубже кабельных прокладок (ширина траншей не меньше 1‚5–2 м‚ глубина – до 1‚5–2‚5 м с пазухами у труб не ниже 0‚4–0‚6 м). В таких случаях можно уже использовать более крупные по размерам и весу вибротрамбовки и виброплиты‚ хотя в ряде стран‚ в число которых входит и Россия‚ действуют ограничения на весовое и динамическое воздействие на трубы‚ передаваемое через верхний защитный слой грунта (не менее 0‚4 м). Поэтому слишком тяжелые или динамичные вибротрамбовки и виброплиты не следует использовать без квалифицированной оценки возможных последствий.

В целом ряде стесненных и неудобных мест (траншеи‚ водопропускные трубы и т. п.) виброплита в конце захватки не может быть развернута для обратного хода. Использование в таких случаях нереверсивных плит (их вес‚ как правило‚ находится в пределах 40–200 кгс) с ходом только вперед практически невозможно. Здесь необходимы реверсивные виброплиты‚ осуществляющие обратный ход без своего разворота.

Такие виброплиты‚ имеющие вес от 120–130 до 700–800 кгс‚ устроены несколько более сложно‚ чем нереверсивные. На них установлен двухвальный вибровозбудитель с дебалансами на каждый из валов‚ причем вращаются они синхронно и в противоположных направлениях.

Путем манипулирования установкой угла наклона результирующей двух центробежных сил этих дебалансов можно получить только вертикальное воздействие плиты на грунт или разной величины вертикальное и горизонтальное усилия.

За счет горизонтальной составляющей обеспечивается перемещение виброплиты (рис. 4)‚ а при смене направления горизонтальной силы она получит обратный ход без своего разворота.

Для работы самоходных виброплит необходимо поверхность уплотнения определенным образом предварительно подготовить‚ т. е. отсыпать более или менее равномерную толщину слоя грунта‚ соответствующую уплотняющей способности виброплиты‚ разровнять и спланировать поверхность ее перемещения. Последнее сделать бывает не так просто‚ особенно в глубоких траншеях‚ что создает трудности для самоходности виброплиты и снижает эффективность ее работы.

В таких случаях полезнее использовать малогабаритный виброкаток со спаренными вальцами. Особенность его принципиальной схемы (рис. 5)‚ разработанной в свое время фирмой Bomag‚ состоит в синхронном вращении дебалансов обоих вальцов‚ что позволяет получать поочередно упорядоченное и более интенсивное воздействие катка на грунт.

Хорошее сцепление с грунтом и лучшую проходимость такие катки имеют‚ когда на них установлены вальцы с ребрами (рис. 6) или кулачками‚ что способствует также повышению качества уплотнения как несвязных (короткие кулачки-бобышки)‚ так и связных грунтов (более длинные квадратные кулачки).

Подобные специальные спаренные виброкатки с габаритной шириной‚ равной ширине вальца (от 40–50 до 100–120 см)‚ получили название траншейных катков (trench rollers). Их выпускают многие фирмы Европы и Америки (Ammann‚ Bomag‚ Dynapac-Svedala‚ Tremix-Svedala‚ Wacker‚ Weber‚ Multiquip/Rammax и др.) общим весом от 500–700 до 1500‚ а отдельные модели даже до 3000 кгс‚ в том числе с дистанционным кабельным или инфракрасным управлением (рис. 7).

В последнее время появились также виброплиты с дистанционным управлением. Здесь‚ как и в случае с траншейными виброкатками‚ роль оператора-машиниста помимо подготовки машины к работе‚ запуску и установке ее‚ например‚ в траншею сводится к поддержанию направления движения‚ остановке и включению обратного хода. Автор не исключает‚ что в ближайшем будущем могут появиться траншейные виброплиты и виброкатки с автоматическим управлением‚ т. е. оператор-машинист может стать наблюдателем работы виброплиты или виброкатка с пультом управления в руках.

В тех стесненных‚ неудобных и труднодоступных местах ведения земляных работ‚ где нет необходимого пространства для перемещения трамбовок‚ плит или катков‚ часто используются подвесные виброплиты на кранах‚ экскаваторах или специальных машинах (рис. 8).

Возможно применение также получивших распространение гидромолотов на одноковшовых экскаваторах.

В России выпускают их на некоторых экскаваторных заводах в виде сменного оборудования не только для разрушения прочных и мерзлых грунтов и других материалов‚ но и для уплотнения их в стесненных и труднодоступных местах.

Подобные гидромолоты на жестких рукоятях и стрелах экскаваторов‚ как‚ впрочем‚ и другие подвесные и самоходные вибротрамбовки‚ виброплиты и виброкатки‚ полезны‚ а порой и незаменимы при устройстве сопряжений мостовых и путепроводных переходов с дорогой. В таких сопряжениях практически чуть ли не весь объем грунта между основной частью земляного полотна и мостовой конструкцией должен уплотняться указанными средствами. Особенно сложно бывает выполнять эту операцию на откосах конусов.

Уплотнение откосов высоких насыпей и мостовых конусов является важной технологической задачей по обеспечению их устойчивости‚ особенно в период строительства и начала эксплуатации дороги‚ когда засев трав по слою растительного грунта на откосе еще не проявил себя в полной мере‚ а природные факторы (дождь‚ снег‚ талая вода‚ ветер и т. п.) могут существенно разрушать эту часть насыпи‚ если она находится в рыхлом состоянии.

Специальных грунтоуплотняющих машин для откосов сейчас нет. Каждый российский или зарубежный подрядчик решает эту задачу по-своему и исходя из имеющихся возможностей.

В частности‚ откосы некоторых насыпей из наиболее неустойчивых на них песчаных грунтов можно уплотнять виброкатком весом 3–5 тс на боковом гибком прицепе к тракторной лебедке (рис. 9).

Однако работать такой каток способен только на уклонах не более 30–35% или не круче 1:3.

В свое время в СССР в некоторых видах строительства (дорожное‚ гидротехническое‚ гидромелиоративное) использовалась так называемая вальцовая трамбовка в виде гладкого металлического вальца (например‚ от списанного крупного катка)‚ подвешиваемого к стреле любого тросового экскаватора-драглайна вместо ковша емкостью 0‚65–1‚0 м3 (рис. 10).

Ось‚ или вал вальца наглухо приваривают к внутренней его полости. Оба конца вальца-трамбовки шарнирно соединены цепями через траверсы с подъемным и тяговым тросами.

При уплотнении откосов экскаватор располагается на насыпи и‚ регулируя подъемный и тяговый тросы‚ обеспечивает удары трамбовкой‚ направленные нормально к поверхности откоса любой крутизны. Заглаживание поверхности откоса осуществляется путем спускания вальца вниз по откосу под действием собственного веса.

Вес вальцовой трамбовки‚ диаметром 1300–1600 мм‚ который можно регулировать за счет балласта (воды‚ например)‚ должен составлять 2–2‚5 тс (для песка) и 3–4 тс (для связного грунта). Высоту падения (сброса) вальца следует назначать тоже сообразно виду грунта: для песков – около 0‚5–1 м‚ для связных грунтов – в пределах 1‚5–2 м. Количество ударов по одному месту – 4 (песок) и 6 (связный грунт). Толщина уплотняемого слоя может достигать 40–50 см‚ а производительность – около 80–100 м3/ч или примерно 200–250 м3/ч. Не очень много. Поэтому стоимость таких работ заметно выше уплотнения грунтов в насыпях и выемках‚ но неудобство и неустойчивость откосов оправдывают целесообразность применения вальцовой трамбовки.

При производстве земляных работ в стесненных и труднодоступных местах могут использоваться как связные‚ так и несвязные грунты. Возможно также применение гравийных и щебеночных материалов для отсыпки подушек и оснований. Все эти грунты и материалы обладают разной уплотняемостью при воздействии на них статических‚ ударных‚ чисто вибрационных и виброударных (или частоударных) нагрузок и средств. Да и сами средства вследствие разнообразия своих параметров тоже имеют различную уплотняющую способность‚ которую следует оценивать нормативными значениями требуемого коэффициента уплотнения и толщиной слоя или глубиной проработки‚ на которой этот коэффициент гарантированно обеспечивается. Поэтому правильная оценка уплотняющей способности тех малогабаритных средств‚ которые используются в стесненных‚ неудобных и труднодоступных местах‚ применительно к типу грунта‚ его разновидности и состоянию‚ крайне важна и необходима.

Эффективность уплотнения грунтов и подобных материалов упомянутыми способами и средствами обусловлена в основном силовыми давлениями‚ возникающими на контакте рабочих органов машин с грунтом‚ временем действия таких давлений и количеством циклов (ударов‚ проходов) приложения давлений к одному и тому же месту.

Ручная вибротрамбовка‚ к примеру‚ при своем весе всего 50–90 кгс‚ среднем размере стороны ударяющего башмака в плане около 30 см (контактная площадь примерно 800–1000 см2) и высоте подскока (прыжка) до 40–60 мм обеспечивает «солидную» силу удара по уплотняемому грунту‚ доходящую до 1000–2000 кгс‚ а по данным проспектов некоторых фирм‚ иногда даже до 4000–5000 кгс‚ действующую однако очень короткий промежуток времени – около 0‚008–0‚012 с. Развиваемые при этом максимальные динамические давления башмака могут достигать 4–6 кгс/см2‚ что в несколько десятков раз превышает его статическое давление (0‚05–0‚10 кгс/см2 или 500–1000 кгс/ м2).

Частота ударов у ручной вибротрамбовки невелика (около 10–11 ударов в сек.)‚ что‚ при средней скорости горизонтального ее перемещения 9–12 м/мин или 15–20 см/с и длине башмака 30–34 см‚ позволяет ей за один свой проход наносить около 15–20 ударов по одному месту уплотняемого грунта. Полную же реализацию своих потенциальных уплотнительных возможностей вибротрамбовка осуществляет за 2–4 прохода‚ т. е. нужное уплотнение грунта происходит примерно за 40–60 ее ударов по месту.

Интересно сравнить результаты уплотнения и параметры ручной вибротрамбовки и трамбующей плиты на экскаваторе (вес – 2–3 тс‚ диаметр подошвы – 1‚0–1‚5 м‚ статическое давление – 1000–2000 кгс/м2‚ высота сброса – 1–2 м и время действия давления – 0‚020–0‚060 с).

Последняя выполняет требуемое уплотнение (0‚95) всего за 6–10 установленных практикой ударов по месту.

Несмотря на значительное различие в весе‚ размерах‚ количестве ударов и других параметрах малогабаритной ручной вибротрамбовки и «солидной» трамбующей плиты‚ у них есть много общего и даже почти совпадающего.

В частности‚ толщины уплотнения (в относительных единицах) различных грунтов до степени 0‚95 у них практически близки и составляют 1‚7–2‚0 (песок‚ гравий)‚ 1‚4–1‚6 (слабосвязный грунт) и 1‚0–1‚2 (связный) от диаметра или меньшего размера стороны основания (башмака) плиты или трамбовки.

Это показал анализ данных многих фирм‚ выпускающих вибротрамбовки‚ и экспериментальных результатов автора по трамбующим плитам. Очевидно‚ в том и другом случае «работают» закономерности механики грунтов и теории подобия.

Следует однако заметить‚ что указанные толщины следует рассматривать как максимально возможные‚ которые будут реализованы только при надлежащих значениях статического давления и скорости удара башмака вибротрамбовки‚ совместно обеспечивающих его импульсное воздействие и соответствующее динамическое давление на грунт. При уменьшении этих параметров результат уплотнения (степень плотности и толщина прорабатываемого слоя) ухудшается.

Скорость удара у большинства вибротрамбовок с приведенными средними их параметрами близка к 2‚5–3 м/с и практически не регулируется. А вот статическое их давление варьируется до 2–3 раз‚ что и позволяет применять вибротрамбовки на разных типах и состояниях грунтов.

Для песчаных‚ обладающих более низкой прочностью на сжатие в рыхлом состоянии и легче поддающихся уплотнению при незначительных силовых воздействиях‚ необходимы вибротрамбовки с пониженным статическим давлением (около 550–650 кгс/м2). Для малосвязных грунтов (пески пылеватые‚ мелкие‚ супеси) статическое давление целесообразно повысить до 700–850‚ а для связных – до 900–1000 кгс/м2. Некоторые фирмы с целью обеспечения таких давлений создают вибротрамбовки различного веса и иногда снабжают их сменными башмаками разных размеров.

Показательным в отношении влияния статического давления ударной части‚ скорости удара‚ времени действия возникающего динамического давления и количества циклов нагружения на результат уплотнения может служить навесной экскаваторный гидромолот‚ оснащаемый круглой или квадратной трамбующей плитой соответствующего размера.

Для таких целей наиболее часто используются гидромолоты с энергией удара 1000–3000 Дж‚ но самыми подходящими по габаритам и воздействиям на песчаные и связные грунты в стесненных и труднодоступных местах следует считать модели с энергией около 1500–2000 Дж. У последних ударная часть весом 100–200 кгс через трамбующую плиту создает статическое давление 300–500 кгс/м2. При скорости удара 4–5 м/с на контакте с грунтом возникают достаточно приемлемые динамические давления (до 6–7 кгс/см2)‚ правда‚ действующие всего 0‚006–0‚007 секунд‚ что специальными датчиками экспериментально зафиксировано докторами технических наук Ивановым Р. А. и Федуловым А. И.

Categories: Без рубрики
9 Июн 2011

Нет особой нужды доказывать техническую и экономическую важность и потребность высококачественного уплотнения асфальтобетонных смесей при строительстве, реконструкции или ремонте покрытий автомобильных дорог.

Применяемые сейчас передовые технологии и современные средства укладки и уплотнения горячих смесей позволяют дорожнику достаточно успешно и быстро справляться с этой сложной задачей в большинстве практических случаев, достигая высоких показателей ровности и плотности покрытия.

Если средний коэффициент уплотнения (Ку) у трети образцов асфальтобетона, отбиравшихся из верхних слоев покрытий проспектов и улиц Санкт-Петербурга в течение пяти лет, предшествующих распаду СССР, был ниже нормативного (0,98–0,99), то теперь брак уплотнения редко превышает 3–5%.

Дорожники ряда фирм Санкт-Петербурга и Ленинградской области (ВАД, Дорстройпроект и др.) стабильно добиваются положительных результатов в устройстве асфальтобетонных покрытий благодаря использованию таких эффективных и современных средств как перегрузчик смеси SB2500 фирмы Roadtec (США), укладчики фирм Dynapac (Швеция), Demag, Vogele и ABG (ФРГ), статические и вибрационные модели гладковальцовых, пневмоколесных и комбинированных катков немецких фирм Bomag (BW154AD) и Hamm (HD85, GRW15), шведской Dynapac (CC142C, CC211, CC232, CC422), американских Jngersoll-Rand (DD90HF) и Clark (TS80, TV20), российской Раскат (ДУ-93).

И, тем не менее, брак по качеству уплотнения и ровности покрытия тоже иногда бывает, хотя по объему он и невелик. Такое происходит чаще всего при устройстве тонких (2–3 см) выравнивающих слоев, в некоторых случаях при укладке обычных слоев (5–6 см) из пластичных песчаных смесей, при уплотнении более толстых (9–10 см) нижних слоев покрытий из крупнозернистых пористых смесей и в некоторых других, даже казалось бы стандартных случаях.

Одной из главных причин возникающего брака, если исключить элементарные технологические упущения, ошибки и нарушения, является само орудие выполнения операции уплотнения, т. е. функциональное несовершенство катка, в том числе современного вибрационного.

Никто на бытовом уровне не забивает мелкие и тонкие гвозди кувалдой или, наоборот, шпальные железнодорожные костыли легких домашним молотком.

А вот дорожный подрядчик фактически вынужден чуть ли не одним и тем же имеющимся у него катком вести уплотнение тонкого (2–3 см), среднего (5–7 см) и толстого (10–12 см) слоя асфальтобетона. Анализ же и расчеты, основанные на учете прочностных и деформативных свойств горячей смеси и других особенностей взаимодействия статического и вибрационного вальца с уплотняемой поверхностью таких слоев, показывают, что виброкаток, например, с вальцами 1680х1200 мм (ширина х диаметр) при укатке мелкозернистого щебенистого асфальтобетона должен иметь вес в первом случае около 6,5–7,0, во втором – 8,5 и в третьем – 10,5 т, а центробежную силу вибровозбудителя соответственно в пределах 4,5–4,7; 6–6,2 и 7,5–7,7 тс. При этом, при одинаковой частоте колебаний вальца, скорость укатки должна быть минимальной на тонком слое, а на толстом – максимально возможной.

Если к этому добавить различие в стартовой плотности горячей смеси после укладчика (коэффициент уплотнения от 0,83÷0,86 до 0,95÷0,97), в составах и типах смесей по гранулометрии (более пластичные песчаные и малощебенистые, более прочные и жесткие многощебенистые), в вязкости используемых битумов, в том числе модифицированных полимерами, прочности и жесткости нижележащих оснований, в технологических стадиях уплотнения (предварительная, основная, заключительная) и погодных условиях ведения работ (весна, лето, осень), то становится совершенно очевидной невозможность обеспечить одним–двумя наличными статическими или вибрационными катками выполнение такого многообразия практических видов и условий работ без широкого регулирования уплотняющих воздействий. Не приобретать же дорожнику на каждый случай отдельный каток.

Нельзя упрекнуть фирмы, создающие дорожные катки, что они игнорируют такую потребность дорожной практики и не предусматривают на своих образцах возможность варьирования силовых нагружений. Однако сами принципы регулирования, основанные на изменении только центробежной силы путем задания нескольких значений (чаще всего двух, хотя есть и больше) амплитуд и частот колебаний вальца, дают не всегда обоснованный крупный или очень мелкий шаг и диапазон регулирования создаваемых усилий и поэтому не могут охватить перечисленные варианты потребных видов и условий работ.

Очевидно наступила пора их осмысления и пересмотра с учетом изменений самого механизма деформирования материала при том или ином способе регулирования и с определением четко обоснованных границ значений создаваемых уплотняющих усилий. Порой ведь виброкатки одной и той же фирмы, да еще равного веса, обладают заметно отличающейся уплотняющей способностью, что свидетельствует об их целенаправленном и зачастую не очень широко задуманном практическом предназначении. Это, помимо всего прочего, может вводить в некоторое заблуждение дорожника и не давать ему необходимых общих ориентиров и критериев выбора и использования наиболее универсальных и эффективных образцов катков.

Иногда создается ощущение, что в одних случаях неудач с уплотнением или даже брака имеющиеся катки совершают чрезмерное «насилие» над уплотняемым материалом, в других – явно недостаточное. Если сопоставлять прочностные и деформативные свойства материала с нагрузками катков, то это ощущение перерастает в определенное убеждение и понимание необходимости улучшения их функциональных параметров и технологических приемов практического применения.

Categories: Без рубрики
9 Июн 2011

Нефтяные битумы находят широкое применение в дорожном и гражданском строительстве, благодаря высокой пластичности, способности выдерживать без разрушений воздействие низких температур, температурных перепадов, различных деформационных нагрузок.

Основным потребителем нефтяных битумов является дорожное строительство, в настоящее время до 90% производимого во всем мире объема товарных битумов потребляется дорожной отраслью. Специалисты разных государств сходятся во мнении, что нефтяной битум является самым дешевым и наиболее универсальным материалом для применения в качестве вяжущего при устройстве дорожных покрытий.

Необходимо отметить тот факт, что дорожные битумы российского и зарубежного производства принципиально различаются по качеству, что предопределено различием нормативных требований к этому виду товарной продукции в нашей стране и за рубежом. Практика дорожного строительства в России, состояние дорог даже федерального значения опровергает мнение о безукоризненности существующих требований к дорожным битумам, сформулированных в ГОСТ 22245.

Многолетний опыт устройства и содержания дорожных покрытий с использованием битумов дорожных вязких марки БНД, изготавливаемых российскими НПЗ, свидетельствует о том, что, например, при значении показателя температуры хрупкости битума, равном −27°C (что намного превышает предел, указанный ГОСТ 22245), разрушение покрытия начинается уже в первый год эксплуатации по причине недостаточной способности битумного вяжущего к растяжению (и это при соответствии значения показателя растяжимости битумов при 25 и 0°C нормативным требованиям).

Положительные результаты применения в последние 10 лет при строительстве и ремонте дорожных покрытий в Санкт-Петербурге и Ленинградской области битумов, характеризующихся иными, чем битумы марок БНД, свойствами, например фирм NESTE, NYNAS, БДУ (Ухтинский НПЗ), позволяют сделать вывод о том, что в основе своей для повышения эксплуатационной надежности дорожных покрытий оказывается достаточным изменить качество дорожного битума.

Использование битумов зарубежного производства и битума дорожного улучшенного марки БДУ (ТУ 38.1011356-91) в составе асфальтобетонных смесей взамен битума дорожного вязкого марки БНД (ГОСТ 22245-90) обеспечило возможность заказчику требовать, а подрядным организациям Санкт-Петербурга принимать на себя гарантийные обязательства на устроенные верхние слои дорожных одежд сроком до 5–7 лет.

Более высокая эксплуатационная надежность асфальтобетонов, изготовленных с применением вышеуказанных марок битума, обусловлена оптимальным комплексом реологических свойств последнего. Это достигается регламентацией зарубежными стандартами требований к таким показателям качества битумов, как кинематическая вязкость при 135°C, динамическая вязкость при 60°C, и установлением пределов изменения глубины проникания иглы, растяжимости при 25°C, динамической вязкости при 60°C в процессе испытания битума на термостабильность по методике ASTM D 1754 (или ASTM D 2872), имитирующей условия воздействия на битумную пленку кислорода воздуха при повышенной температуре в асфальтосмесителе при изготовлении горячих асфальтобетонных смесей.

Анализ результатов испытания (в том числе и по методикам ASTM) битумов дорожных российского производства (таблица 1) показывает, что при идентичности значений показателя глубины проникания иглы при 25°C и других битумы, изготовленные из остатков переработки разных по химическому составу нефтей, принципиально различаются по вязкости. При работе в составе дорожного асфальтобетона наиболее устойчивым к воздействию сдвиговых усилий в теплое время года оказывается битум марки БНД 60/90, характеризующийся более высокой динамической вязкостью при 60°C. Однако, трещиностойкость асфальтобетонных покрытий при прочих равных условиях зависит от способности битума выдерживать без разрушения растягивающие усилия.

Categories: Без рубрики
9 Июн 2011

Асфальтобетонные заводы (АБЗ) являются основными производственными предприятиями дорожного хозяйства и предназначены для приготовления различных асфальтобетонных смесей для строительства, реконструкции и ремонта слоев асфальтобетонного покрытия

Однако перечень выполняемых на АБЗ технологических операций, а следовательно и номенклатура технологического оборудования АБЗ, значительно шире просто комплекса операций по приготовлению смесей и перечня необходимого дляприготовления их оборудования.

Перечень технологических и обеспечивающих операций включает:

технологические операции (комплекс операций) по приготовлению смесей, включая предварительное дозирование минеральных материалов, нагрев и сушку минеральных материалов, сортировку (грохочение) и кратковременное хранение нагретых каменных материалов, точное дозирование минеральных материалов, битума или другого специального вяжущего, минерального порошка и добавок, смешение составляющих в мешалке и выгрузка из мешалки готовой (товарной) асфальтобетонной смеси;
технологические операции по приему, хранению и подаче в бункеры по фракциям каменных материалов, а при необходимости получение на АБЗ необходимых по крупности фракций щебня и песка путем дробления и сортировки более крупных фракций щебня;
технологические операции по приему, хранению, нагреву и подаче в дозаторы битума;
технологические операции по приему, хранению и подаче в дозатор минерального порошка (заполнителя);
технологические операции по приему, хранению, нагреву и подаче в дозатор поверхностно-активных веществ (ПАВ);
технологические операции по складированию, кратковременному хранению и отгрузке готовой асфальтобетонной смеси.

Для выполнения всего комплекса технологических операций в состав АБЗ входит следующее технологическое оборудование:

асфальтосмесительные установки;
приемные устройства для каменных материалов, площадки для их хранения и машины для их подачи в бункеры асфальтосмесительных установок;
приемные устройства для битума, хранилища (емкости) для битума, битумонагревательное оборудование, битумные насосы;
приемные устройства и площадки для бочек с ПАВ или емкости для ПАВ, нагреватели для ПАВ и насосы для их подачи к смесителю;
приемные устройства и емкости для хранения минерального порошка и насосы (пневмосистемы) для подачи его к смесителю;
загрузочное устройство (скип или элеватор) готовой смеси, бункеры-накопители готовой смеси;
дробильно-сортировочное оборудование для получения требуемых фракций щебня и песка.

Categories: Без рубрики
8 Июн 2011

Так же, как все человечество, которое всегда стремилось создать вечный двигатель, дорожники во всем мире мечтали о дорожном покрытии с бесконечным сроком службы. Однако и первое, и второе пока остается несбыточной мечтой

Множество факторов, которые воздействуют на дорожную одежду, рано или поздно приводят к появлению дефектов на дорожном покрытии. Наиболее распространенным видом дефектов являются трещины. Вовремя не отремонтированные трещины постепенно превращаются в очаг разрушения дорожной одежды. Трещины классифицируются по ширине на узкие – до 5 мм, средние – 5–10 мм и широкие – 10–30 мм.

В зависимости в основном от ширины и причин образования трещин выбирается технология их ремонта и состав применяемого оборудования. Основной задачей при ремонте трещин является предотвращение проникновения через них воды в нижележащие слои дорожной одежды. Гидроизоляция трещин достигается за счет их герметизации битумом или специальными материалами – резинобитумной или битумно-полимерной мастиками.

Следует сразу отметить, что для обеспечения качества герметизации трещин необходимо в первую очередь ориентироваться не на битум, а на мастики горячего применения, физико-механические свойства которых значительно превосходят свойства битума. В настоящее время как отечественные, так и зарубежные фирмы выпускают широкую гамму мастик, лучшими из которых по эксплуатационным качествам являются битумно-полимерные.

При выборе мастик необходимо ориентироваться на их основные свойства: температуру размягчения, которая у отдельных марок составляет +100°С; температуру хрупкости (до −50°С); относительное удлинение (до 150% при температуре +20°С), эластичность (до 95%).

Помимо мастики, огромное влияние на качество герметизации трещин оказывает правильный выбор и строгое соблюдение технологии производства работ и применяемого оборудования.

Узкие трещины не требуют большого набора сложных технологических операций. Как правило, трещины шириной до 5 мм очищают продувкой сжатым воздухом, просушивают, прогревают и заполняют битумной эмульсией или мастикой с высокой проникающей способностью. Просушку трещины, как правило, совмещают с операцией прогрева, при этом необходимым условием является нагрев зоны трещины до температуры не менее 80°С.

Средние и широкие трещины изначально должны быть оценены на предмет разрушения кромок. В случае, если трещина имеет разрушенные кромки, технология ремонта должна начинаться с операции ее разделки, то есть искусственного расширения ее верхней части с образованием камеры, в которой обеспечивается оптимальная работа герметизирующего материала на растяжение в период раскрытия трещины. Причем ширина камеры должна быть не меньше зоны разрушения кромок трещины. Для создания наилучших условий работы герметика в камере соотношение ее ширины и глубины обычно принимается как 1:1. Кроме того, при определении геометрических размеров камеры необходимо учитывать максимально возможное раскрытие трещины и относительное удлинение используемого герметизирующего материала. Обычно ширина камеры находится в пределах 12–20 мм.

В случае, когда кромки трещины не подвергались разрушению и имеется возможность качественно загерметизировать трещину без ее разделки, данную операцию можно исключить из технологического процесса.

Следует отметить, что операция фрезерования или разделки трещины является наиболее дорогостоящей из-за высокой стоимости применяемого инструмента, и включение ее в технологию производства работ должно быть экономически и технически обосновано.

Важнейшим условием обеспечения качества герметизации трещин является наличие хорошего сцепления герметика со стенками неразделанной трещины или отфрезерованной камеры. В связи с чем большое внимание уделяется проведению подготовительных работ по очистке и просушке трещины. Даже небольшое количество грязи или влаги в полости трещины не позволяет обеспечить надежную адгезию мастики к ее стенкам. В некоторых случаях для улучшения адгезии производят подгрунтовку стенок отфрезерованной камеры праймером – маловязкой пленкообразующей (склеивающей) жидкостью.

Однако данная операция более эффективна при ремонте цементобетонных, чем асфальтобетонных покрытий. Для асфальтобетонных покрытий более целесообразно использовать прогрев зоны трещины до температуры, при которой происходит выделение вяжущего из асфальтобетона на стенках трещины, которое увеличивает прочность сцепления герметика со стенками. Бесспорно, основной технологической операцией при ремонте трещин является их заливка горячей мастикой. Мастика предварительно нагревается до температуры 150–180°С, после чего подается в устроенную камеру или непосредственно в полость трещины.

При этом в зависимости от применяемого оборудования можно либо произвести герметизацию самой трещины, либо одновременно с заливкой устроить на поверхности покрытия в зоне трещины пластырь. Такой пластырь шириной 6–10 см и толщиной 1–3 мм позволяет укрепить кромки трещины и предотвратить их разрушение. Однако опыт проведения таких работ на МКАД показывает, что устройство пластыря в зоне трещины на автомобильных дорогах с высокой интенсивностью движения малоэффективно, так как материал пластыря довольно быстро разрушается колесами движущегося транспорта.

Завершающей операцией технологии ремонта трещин является присыпка загерметизированной трещины дробленым сухим песком фракции 3–5 мм, близким по цвету основному минеральному материалу покрытия. Присыпка служит для восстановления общей текстуры и шероховатости покрытия, а также предотвращает налипание мастики на колеса автомобиля.

Технологический процесс санации трещин должен быть практически непрерывен. Операции очистки от пыли и грязи, просушки, прогрева и заливки трещин должны переходить одна в другую при минимальном разрыве по времени.

Categories: Без рубрики
8 Июн 2011

Накопившийся за многие годы так называемый «недоремонт» существующей сети российских автомобильных дорог пагубно отразился на сегодняшнем состоянии их покрытий и условиях движения транспорта

Правда, после объявленных недавно приоритетов в выделении средств на ремонтные работы эта ситуация стала несколько выправляться на федеральных дорогах магистрального направления и на столичных улицах и проспектах. Хуже, если не сказать совсем плохо, обстоят дела на дорогах территориального подчинения, особенно на чрезмерно удаленных от административных центров.

Причина такого незавидного и унизительного положения национальных автодорожных артерий всем хорошо и давно известна – в бюджетах страны и субъектов федерации нет в достатке средств на эти цели и работы. А пока объемы «умирающих» дорог с просроченными сроками службы и низким качеством покрытий продолжают превышать объемы ремонтируемых.

В преддверии уже начавшегося тысячелетия многие страны, в том числе развитые и богатые, тоже стояли перед подобной кризисной проблемой недостаточного финансирования планов и работ по восстановлению и модернизации состарившихся дорожных сетей. Нужны были новые рентабельные методы реанимации этих сетей, которые явились бы альтернативой прежним материалоемким и достаточно дорогостоящим технологиям.

Одной из таких альтернатив стал метод терморегенерации или термофрезерного восстановления утраченных в процессе эксплуатации свойств и качеств асфальтобетонного покрытия. Экономическая привлекательность и плодотворность этой технологии состояла в том, что имеющийся в дороге материал использовался повторно. Поэтому отпадала нужда вывозить с дороги удаляемый старый и привозить новый асфальтобетон. Однако этот горячий метод себя не оправдал из-за быстрого старения битума и низкой долговечности восстанавливаемых покрытий (разрушения начинались через 2–3 года).

Исправно отслуживший свое время в различных технологических вариациях (remix, remix plus, repave и др.) и постепенно отходящий от серьезного использования термофрезерный способ стал постепенно вытесняться методом холодного фрезерного удаления дефектных и изношенных покрытий с заменой снятого асфальтобетона на привозной новый («свежий»).

Этот метод со временем стал технологическим приоритетом для дорожников большинства стран мира, несмотря на очевидность его затратного характера и отступление от главного принципа горячей регенерации – безотходности и экономичности.

Нужно было опять искать и разрабатывать другие альтернативные решения. Так около 12–13 лет назад появилась привлекательная и перспективная технология холодного ресайклинга дорожных одежд на месте или прямо на дороге (cold deep in-place recycling). Она получила мировое признание за свой возврат к главным идеям терморегенерации, но на более высоком качественном уровне конечного результата, и в первую очередь относительно долговечности или сроков службы восстанавливаемых по этой технологии дорожных одежд с асфальтобетонными покрытиями.
Машина RM-350B фирмы Caterpillar для холодной регенерации и стабилизации дорожного покрытия
Рис. 2. Машина RM-350B фирмы Caterpillar для холодной регенерации и стабилизации дорожного покрытия

Невзирая на свою относительную молодость, география и объемы практического использования холодного ресайклинга стали постепенно расширяться, особенно после появления и насыщения рынка специальными машинами фирм Wirtgen, Германия (рис. 1), Caterpillar, США (рис. 2), Bomag, Германия (рис. 8) и других. Есть основания полагать, что пик популярности и производственных успехов, в том числе в России, у холодного ресайклинга еще впереди.

Долгое время в СССР (Россия и СНГ) наиболее распространенным способом восстановления и повышения прочностных и эксплуатационных показателей дефектных и изношенных дорожных одежд было устройство дополнительного слоя усиления (4–5 см) поверх подготовленного ямочным ремонтом старого покрытия. Порочность его состояла в том, что через сравнительно небольшое время во вновь уложенном слое копировались дефекты старого покрытия, особенно так называемые отраженные трещины. Предварительная укладка над старыми трещинами специальных геосинтетических сеток несколько отодвигала срок их появления, но не исключала вовсе.

Технология горячей регенерации продолжительное время также была на вооружении некоторых крупных российских подрядчиков, прежде всего в больших городах и на магистральных дорогах. Из-за дороговизны комплекта машин для технологии, к примеру, remix средние и мелкие дорожные подразделения были лишены возможности приобретать этот комплект и загружать его надлежащим объемом работ. Поэтому необходимый ремонт и реконструкция покрытий производились в основном по первому, порочному способу.

Правда, с появлением и более широкой доступностью средних и крупных менее дорогих, чем ремиксеры, холодных фрез фактически все подрядчики, в том числе выполняющие ямочный ремонт, перешли на повсеместно и широко теперь применяемый в России метод замещения изношенного асфальтобетона, удаляемого этими холодными фрезами, на новый из свежей смеси. Такой затратный способ преобладает сейчас на капитальном ремонте покрытий большинства федеральных и территориальных дорог.

Технология холодного ресайклинга тоже пробивает себе дорогу на российские дорожные объекты, но не так быстро, как того она заслуживает. Имеющиеся единичные экземпляры холодных ресайклеров в Архангельской, Самарской, Свердловской, Кемеровской областях, Подмосковье и Западной Сибири не могут пока влиять на общую ситуацию.

Если учесть объемы накопившегося недоремонта, следует признать, что этот метод внедряется у нас вяло и как-то нехотя. То ли нет команды «сверху», как в прежние времена, то ли российские специалисты не до конца еще разобрались в сути, возможностях и экономических достоинствах этой новой технологии, то ли наши дорожные подрядчики-бизнесмены насчитали не слишком большую прибыль для своих фирм от ее внедрения.

А суть этой новой для российской дорожной отрасли технологии состоит в том, что для повторного или дальнейшего использования лежащего в дороге, состарившегося и разрушенного материала изношенной и дефектной дорожной одежды (рис. 3) необходимо определенное его укрепление (стабилизация) комплексными добавками органических (горячий битум, вспененный битум, битумная эмульсия) и минеральных (в основном цемент, реже известь) вяжущих. Для этого и создан холодный ресайклер, который способен своим мощным фрезерным барабаном измельчить материал дорожной одежды (покрытия и основания) на глубину до 30 см, а в некоторых случаях и более, с одновременной его обработкой указанными вяжущими (стабилизаторами) и с распределением ровным слоем. Последующее заключительное уплотнение выполняется обычными дорожными катками.

Categories: Без рубрики
8 Июн 2011

Поверхностные обработки используются:

либо как профилактический слой, который закрывает и предохраняет в плохую погоду основные конструктивные слои дорожных покрытий от преждевременного разрушения;
либо как слой износа, подверженный стиранию в процессе движения, предохраняя наилучшим образом структуру дороги. Такому слою требуется только периодическое обновление для придания структуре дороги ее первоначальных качеств;
либо как верхний слой дорожного покрытия с характеристиками шероховатости, обеспечивающими сцепление и хорошее дренирование поверхностных вод, приводящими к значительному понижению порога аквапланирования и создающими, благодаря повышенному удельному давлению, хорошее сопротивление формированию гололеда.

Кроме технических преимуществ, поверхностные обработки имеют достаточно конкурентоспособную стоимость по сравнению с комплексом верхних слоев дорожных одежд, используемых в этих случаях.

Существует много различных способов устройства поверхностных обработок, из которых в настоящей статье рассматривается лишь один – использование для этой цели фракционного щебня и различных органических вяжущих, в том числе эмульгированных.

Чтобы создать поверхностную обработку, соответствующую представленным требованиям, необходимо при ее устройстве соблюдать несколько принципиальных положений:

использовать вяжущее, которое прочно и надолго соединяется с поверхностью покрытия или основания. Это соединение называется парой «вяжущее – основа»;
каменный материал должен быть прикреплен к покрытию или основанию, а каждая щебенка должна быть прочно соединена с соседними. Это взаимодействие называют парой «вяжущее – щебень»;
количество вяжущего должно быть достаточным, чтобы покрыть пленкой каждую щебенку на необходимую высоту и заполнить все микротрещины покрытия, но не быть избыточным, чтобы не выступать на поверхность щебеночного слоя. Это основной принцип дозировки и распределения вяжущего;
каменный материал должен быть чистым, обладать высокими физико-механическими свойствами (прочностью, морозостойкостью, сопротивлением истиранию и др.), иметь определенные формы и размеры. Это основные требования к каменным материалам;
количество каменного материала должно быть достаточным, чтобы создать нужную структуру поверхности, но не быть излишним, чтобы избежать необходимости удаления его. Это принцип дозировки и распределения каменного материала;
каждая щебенка должна занять наиболее стабильное положение, а все вместе должны создавать сплошной монолитный слой с шероховатой поверхностью. Это основной принцип уплотнения.

Таковы основные принципы обеспечения высокого качества поверхностной обработки. Кроме того, есть ряд дополнительных условий:

все работы по устройству поверхностной обработки должны быть выполнены в наиболее благоприятных условиях погоды. Это принцип назначения сроков выполнения работ;
до начала работ должны быть решены все организационные вопросы, касающиеся поставки материалов, подготовки машин и оборудования. Это принцип организации работ;
в процессе работ должны строго выполняться требования к технологии производства работ и качеству применяемых материалов. Это принцип организации контроля качества.

Поверхностные обработки с использованием фракционированного щебня устраивают преимущественно на участках дорог с опасными и затрудненными условиями движения на дорогах I – III категорий.

В зависимости от типа и состояния покрытия поверхностные обработки могут быть одиночными и двойными; на цементобетонных покрытиях – только двойными.

Categories: Без рубрики
8 Июн 2011

Объемы производства щебня в мире превышают 3 млрд. м3 в год. Интересной особенностью щебня как продукта, производимого из природного минерального сырья, является то, что цены на него во всем мире за последние 50 лет выросли в 2,5–3 раза. В то же время цены на большинство продуктов, производимых на базе минерального сырья (например, черные и цветные металлы), за это же время упали в 3–5 раз.

Кажущаяся простота производства щебня – дробление горных пород – обманчива, так как современные технологии производства строительных материалов и изделий на их основе предъявляют все более высокие требования к качеству щебня, используемого, в основном, как заполнитель при производстве бетонов, асфальтобетонов и дорожных покрытий.

Щебень для дорожного строительства

Щебень является одним из основных материалов, применяющихся для строительства, ремонта и содержания автомобильных дорог. От его качества в значительной мере зависят их потребительские свойства (ровность, коэффициент сцепления и т.д.) и долговечность. Особенно это относится к щебню, применяемому для устройства верхних слоев дорожной одежды, непосредственно воспринимающих высокие механические нагрузки от движущегося транспорта, находящихся под воздействием природных факторов и антигололедных химических средств.

Щебень, применяемый в дорожном хозяйстве, условно можно разделить на три группы:

щебень для устройства оснований дорожных одежд (любые, но преимущественно осадочные скальные и рыхлые горные породы с крупностью фракций 5–20, 20–40, 40–70, 0–40, 0–70 мм);
щебень для нижних слоев покрытий (метаморфические и магматические горные породы с крупностью фракций 5–20 и 20–40 мм);
щебень для верхних слоев покрытий из асфальтобетонных смесей типа А и поверхностной обработки (магматические и частично метаморфические горные породы крупностью щебня от 5 до 20 мм) с содержанием зерен пластинчатой (лещадной) и игловатой формы не более 15% (группа 1 по ГОСТ 8267-93), который принято называть «кубовидным».

Общий объем производства каменных материалов (щебень, гравий, песок) в России в настоящее время составляет примерно 140 млн м3 в год, причем примерно половина этого количества используется в дорожном строительстве.

За последние годы сформировался устойчивый спрос на щебень кубовидной формы со стороны дорожно-строительных организаций, но эта потребность в РФ сейчас удовлетворяется только на 30–40%.

Categories: Без рубрики
8 Июн 2011

Способы утилизации снежной массы

В настоящее время применяются следующие технологии утилизации вывозимой с дорог снежной массы:

постоянные места складирования, т. н. «сухие» снегосвалки с очистными сооружениями.
снегосплавные пункты на коллекторах хозяйственно-фекальной и ливневой канализации, бросовых водах производственных предприятий и руслах подземных рек.

Камеры таких пунктов должны обладать гидравлическим и термическим потенциалом, способным быстро утилизировать значительный объем снежной массы. Снегосплавные камеры можно подразделить на:

камеры со свободным таянием снега и снежно-ледяных образований в водном потоке;
снегосплавные камеры с использованием оборотной воды;
снегосплавные камеры с подачей снежно-ледяных образований через молотковую дробилку.
снегосплавные пункты
работающими на газе или дизельном топливе погружными горелками в камерах для таяния снега.
речные свалки.

В реки сбрасывается снег с площадей с небольшой транспортной нагрузкой и минимальным расходом противогололедных материалов. Речные свалки в городах следует рассматривать как временный фактор. В дальнейшем, по мере роста числа оборудованных «сухих» свалок и снегосплавных пунктов, они будут использоваться только для аварийных случаев сброса снега.

Снегосплавные пункты

Снегосплавной пункт представляет собой комплекс инженерных сооружений, расположенный на канализационных или водосточных сетях, имеющий приемную камеру (или камеры), энергетическое и насосное оборудование, систему трубопроводов и затворов, обеспечивающих круглосуточный прием и плавление снега с отведением талых вод в систему канализации города. Конструктивно снегосплавные пункты – в зависимости от конструкции снегосплавных камер, способов подачи снежной массы и воды для активного плавления – можно разделить на несколько типов:

однокоридорные снегосплавные пункты;
снегосплавные пункты, совмещенные с песколовками;
снегосплавные пункты
подачей снежной массы через молотковую дробилку;
снегосплавные пункты
погружными горелками.

Однокоридорный снегосплавной пункт на коллекторе

Исходя из практического опыта, проводить снегосплав в водосточный коллектор целесообразно, если тот имеет диаметр не менее 1500 мм, постоянный расход воды – более 500 л/с и скорость водного потока не менее 0,4–0,5 м/с. Загрузка сети сточной жидкостью не должна превышать половины ее диаметра. Прием снега производится через специальную камеру. Устройство камеры непосредственно на водосточном коллекторе или коллекторе промышленных стоков представляется неудобным, поэтому делается отвод от основного коллектора, так называемая байпасная линия, внутри которой имеется отстойник для сбора загрязнений, размером 2,5х8,0 м и глубиной 1,2 м. Выгружаемый самосвалами на решетку снег проваливается в поток жидкости в коллекторе и расплавляется.

Решетка служит не только для раздробления крупных комьев снега и снежно-ледяных образований на более мелкие части путем их продавливания гусеницами или колесами бульдозеров, но и для задержания крупногабаритного мусора. В процессе разгрузки бульдозеры на колесном или гусеничном ходу направляют снег на решетку и продавливают. По мере заполнения отстойника, камера закрывается, металлические решетки снимаются, и производится ее очистка илососами или экскаваторами. Грязь и другие отложения вывозятся самосвалами на отведенные места складирования.

Выпадение взвеси из потока сточной и талой воды в камере способствует снижению загрязнений в коллекторах и водоемах, куда транспортируются стоки. По результатам наблюдений можно отметить, что лучше всего через решетку проходит сухой рыхлый снег; хуже –обводненный, и почти не проходит снег, смерзшийся в комья. Наибольшее влияние на время прохождения снега через решетку оказывает тип снегопогрузчика, которым производилась загрузка подвозящих снег самосвалов. Если использовался роторный снегопогрузчик, снег хорошо разрыхляется и его прохождение через решетку заметно ускоряется. В случае же применения лапового снегопогрузчика комья снежно-ледяных образований необходимо разрушать гусеницами бульдозера. Размер площадки у камеры сплавного пункта должен обеспечивать одновременное маневрирование нескольких машин и возможность временного складирования снега у камеры.

Categories: Без рубрики
8 Июн 2011

Раньше (до 30-х годов прошедшего столетия) реализация указанных показателей грунтовых насыпей тоже осуществлялась уплотнением, но не механическим или искусственным путем, а за счет естественной самоосадки грунта под воздействием, в основном, его собственного веса и, частично, движения транспорта. Возведенную насыпь оставляли, как правило, на один–два, а в некоторых случаях и на три года, и только после этого устраивали основание и покрытие дороги.

Однако начавшаяся в те годы быстрая автомобилизация Европы и Америки потребовала ускоренного строительства обширной сети дорог и пересмотра методов их устройства. Существовавшая тогда технология возведения земляного полотна не соответствовала возникшим новым задачам и стала тормозом в их решении. Поэтому появилась потребность в разработке научно-практических основ теории механического уплотнения земляных сооружений с учетом достижений механики грунтов, в создании новых эффективных грунтоуплотняющих средств.

Это в те годы стали изучать и учитывать физико-механические свойства грунтов, оценивать их уплотняемость с учетом гранулометрического и влажностного состояния (метод Проктора, в России – метод стандартного уплотнения), были разработаны первые классификации грунтов и нормы на качество их уплотнения, стали внедряться методы полевого и лабораторного контроля этого качества.

Основным грунтоуплотняющим средством до указанного периода являлся гладковальцовый статический каток прицепного или самоходного типа, пригодный только для прикатки и выравнивания приповерхностной зоны (до 15 см) отсыпанного слоя грунта, да еще ручная трамбовка, применявшаяся главным образом на уплотнении покрытий, при ремонте выбоин и для уплотнения обочин и откосов.

Эти простейшие и малоэффективные (с точки зрения качества, толщины прорабатываемого слоя и производительности) уплотняющие средства стали вытесняться такими новыми средствами, как пластинчатые, ребристые и кулачковые (вспомнили изобретение 1905 г. американского инженера Фитцджеральда) катки, трамбующие плиты на экскаваторах, многомолотковые трамбующие машины на гусеничном тракторе и гладковальцовом катке, ручные взрыв-трамбовки («лягушки-попрыгушки») легкие (50–70 кг), средние (100–200 кг) и тяжелые (500 и 1000 кг).

В это же время появились первые грунтоуплотняющие вибрационные плиты, одна из которых фирмы «Лозенгаузен» (впоследствии фирма «Вибромакс») была достаточно крупной и тяжелой (24–25 т вместе с базовым гусеничным трактором). Ее виброплита площадью 7,5 м2 располагалась между гусеницами, а двигатель мощностью 100 л.с. позволял вращать вибровозбудитель с частотой 1500 кол/мин (25 Гц) и перемещать машину со скоростью около 0,6–0,8 м/мин (не более 50 м/ч), обеспечивая производительность примерно 80–90 м2/ч или не более 50 м3/ч при толщине уплотняемого слоя около 0,5 м.

Более универсальным, т.е. способным уплотнять различные типы грунтов, в том числе связные, несвязные и смешанные, показал себя метод трамбования.

К тому же при трамбовании легко и просто можно было регулировать силовое уплотняющее воздействие на грунт за счет изменения высоты падения трамбующей плиты или трамбующего молотка. Вследствие этих двух достоинств метод ударного уплотнения в те годы стал наиболее востребованным и распространенным. Поэтому количество трамбующих машин и устройств множилось.

Уместно отметить, что и в России (тогда СССР) тоже понимали важность и необходимость перехода к механическому (искусственному) уплотнению дорожных материалов и налаживанию производства уплотняющей техники. В мае 1931 г. в мастерских г. Рыбинска (сегодня ЗАО «Раскат») был выпущен первый отечественный самоходный дорожный каток.

После завершения второй мировой войны совершенствование техники и технологии уплотнения грунтовых объектов пошло с не меньшим энтузиазмом и результативностью, чем в довоенное время. Появились прицепные, полуприцепные и самоходные пневмоколесные катки, ставшие на определенный период времени основным грунтоуплотняющим средством во многих странах мира. Их вес, в том числе единичных экземпляров, варьировался в довольно широких пределах – от 10 до 50–100 т, но большинство выпускавшихся моделей пневмокатков имело нагрузку на шину 3–5 т (вес 15–25 т) и толщину уплотняемого слоя, в зависимости от требуемого коэффициента уплотнения, от 20–25 см (связный грунт) до 35–40 см (несвязный и малосвязный) после 8–10 проходов по следу.

Одновременно с пневмокатками развивались, совершенствовались и приобретали все большую популярность, особенно в 50-е годы, вибрационные грунтоуплотняющие средства – виброплиты, гладковальцовые и кулачковые виброкатки. Причем, со временем на смену прицепным моделям виброкатков пришли более удобные и технологичные для выполнения линейных земляных работ самоходные шарнирно-сочлененные модели или, как их назвали немцы, «вальцен-цуг» (тяни-толкай).
Гладковальцовый виброкаток CA 402 фирмы DYNAPAC
Гладковальцовый виброкаток CA 402
фирмы DYNAPAC

Каждая современная модель грунтоуплотняющего виброкатка, как правило, имеет два исполнения – с гладким и кулачковым вальцом. При этом некоторые фирмы изготавливают к одному и тому же одноосному пневмоколесному тягачу два отдельных взаимозаменяемых вальца, а другие предлагают покупателю катка вместо целого кулачкового вальца всего лишь «насадку-обечайку» с кулачками, легко и быстро закрепляемую поверх гладкого вальца. Есть также фирмы, разработавшие подобные гладковальцовые «насадки-обечайки» для монтажа поверх кулачкового вальца.

Следует особо отметить, что сами кулачки на виброкатках, особенно после начала их практической эксплуатации в 1960 г., претерпели существенные изменения в своей геометрии и размерах, что благотворно отразилось на качестве и толщине уплотняемого слоя и снизило глубину взрыхления приповерхностной зоны грунта.

Если раньше кулачки «шипфут» были тонкими (опорная площадь 40–50 см2) и длинными (до 180–200 мм и более), то современные их аналоги «пэдфут» стали более короткими (высота в основном 100 мм, иногда 120–150 мм) и толстыми (опорная площадь около 135–140 см2 с размером стороны квадрата или прямоугольника около 110–130 мм).

По закономерностям и зависимостям механики грунтов увеличение размеров и площади контактной поверхности кулачка способствует росту глубины эффективного деформирования грунта (для связного грунта она составляет 1,6–1,8 размера стороны опорной площадки кулачка). Поэтому слой уплотнения суглинка и глины виброкатком с кулачками «пэдфут» при создании надлежащих динамических давлений и с учетом 5–7 см глубины погружения кулачка в грунт стал составлять 25–28 см, что и подтверждают практические измерения. Такая толщина слоя уплотнения соизмерима с уплотняющей способностью пневмоколесных катков весом не менее 25–30 т.

Если к этому добавить существенно большую толщину уплотняемого слоя несвязных грунтов виброкатками и более высокую их эксплуатационную производительность, станет понятно, почему прицепные и полуприцепные пневмоколесные катки для уплотнения грунтов стали постепенно исчезать и сейчас практически не выпускаются или выпускаются редко и мало.

Таким образом, в современных условиях основным грунтоуплотняющим средством в дорожной отрасли подавляющего большинства стран мира стал самоходный одновальцовый виброкаток, шарнирно-сочлененный с одноосным пневмоколесным тягачом и имеющий в качестве рабочего органа гладкий (для несвязных и малосвязных мелкозернистых и крупнозернистых грунтов, в том числе скально-крупнообломочных) или кулачковый валец (связные грунты).

Сегодня в мире имеется более 20 фирм, выпускающих около 200 моделей таких грунтоуплотняющих катков различных типоразмеров, отличающихся друг от друга общим весом (от 3,3–3,5 до 25,5–25,8 т), весом вибровальцового модуля (от 1,6–2 до 17–18 т) и своими габаритами. Есть также некоторое различие в устройстве вибровозбудителя, в параметрах вибрации (амплитуда, частота, центробежная сила) и в принципах их регулирования. И конечно перед дорожником могут возникать, как минимум, два вопроса – как правильно выбрать подходящую модель подобного катка и как наиболее эффективно с ее помощью осуществить качественное уплотнение грунта на конкретном практическом объекте и с наименьшими издержками.

При решении таких вопросов следует предварительно, но достаточно точно установить те преобладающие типы грунтов и их состояние (гранулометрический состав и влажность), для уплотнения которых подбирается виброкаток. Особенно, или в первую очередь, следует обратить внимание на наличие в составе грунта пылеватых (0,05–0,005 мм) и глинистых (меньше 0,005 мм) частиц, а также на относительную его влажность (в долях оптимального ее значения). Эти данные дадут первые представления об уплотняемости грунта, возможном способе его уплотнения (чисто вибрационный или силовой виброударный) и позволят остановить свой выбор на виброкатке с гладким или кулачковым вальцом. Влажность грунта и количество пылеватых и глинистых частиц существенным образом влияют на прочностные и деформационные его свойства, а, следовательно, и на необходимую уплотняющую способность выбираемого катка, т.е. его способность обеспечить требуемый коэффициент уплотнения (0,95 или 0,98) в слое отсыпки грунта, задаваемом технологией устройства земляного полотна.

Большинство современных виброкатков работает в определенном виброударном режиме, выраженном в большей или меньшей степени в зависимости от их статического давления и вибрационных параметров. Поэтому уплотнение грунта, как правило, происходит под воздействием двух факторов:

вибраций (колебаний, сотрясений, шевелений), вызывающих снижение или даже разрушение сил внутреннего трения и небольшого сцепления и зацепления между частицами грунта и создающих благоприятные условия для эффективного смещения и более плотной переупаковки этих частиц под воздействием собственного веса и внешних сил;
динамических сжимающих и сдвигающих усилий и напряжений, создаваемых в грунте кратковременными, но частоударными нагружениями.

В уплотнении сыпучих несвязных грунтов основная роль принадлежит первому фактору, второй служит лишь положительным дополнением к нему. В связных грунтах, в которых силы внутреннего трения незначительны, а физико-механические, электрохимические и водно-коллоидные сцепления между мелкими частицами существенно выше и являются преобладающими, главным действующим фактором служит сила давления или напряжения сжатия и сдвига, а роль первого фактора становится второстепенной.

Исследованиями российских специалистов по механике и динамике грунтов в свое время (1962–64 гг.) было показано, что уплотнение сухих или почти сухих песков при отсутствии внешней их пригрузки начинается, как правило, при любых слабых вибрациях с ускорениями колебаний не менее 0,2g (g – земное ускорение) и завершается практически полным их уплотнением при ускорениях около 1,2–1,5g.

Для тех же оптимально влажных и водонасыщенных песков диапазон эффективных ускорений несколько выше – от 0,5g до 2g. При наличии внешней пригрузки с поверхности или при нахождении песка в зажатом состоянии внутри грунтового массива его уплотнение начинается лишь с некоторого критического ускорения, равного 0,3–0,4g, с превышением которого процесс уплотнения развивается более интенсивно.

Примерно в то же время и почти точно такие же результаты на песках и гравии были получены в экспериментах фирмы «Dynapac», в которых с помощью лопастной крыльчатки было показано также, что сопротивление сдвигу этих материалов в момент их вибрирования может снижаться на 80–98%.

На основании таких данных можно построить две кривые – изменения критических ускорений и затухания действующих от виброплиты или вибровальца ускорений грунтовых частиц с удалением от поверхности, где располагается источник колебаний. Точка пересечения этих кривых даст интересующую глубину эффективного уплотнения песка или гравия.
Кривые затухания ускорения колебаний частиц песка при уплотнении катком ДУ-14
Рис. 1. Кривые затухания ускорения колебаний
частиц песка при уплотнении катком ДУ-14

На рис. 1 показаны две кривые затухания ускорений колебаний частиц песка, зафиксированные специальными датчиками, при его уплотнении прицепным виброкатком ДУ-14 (Д-480) на двух рабочих скоростях. Если принять для песка внутри грунтового массива критическое ускорение 0,4–0,5g, то из графика вытекает, что толщина прорабатываемого слоя таким легким виброкатком составляет 35–45 см, что неоднократно подтверждено полевым контролем плотности.

Недостаточно или плохо уплотненные сыпучие несвязные мелкозернистые (песчаные, песчано-гравийные) и даже крупнозернистые (скально-крупнообломочные, гравийно-галечниковые) грунты, уложенные в земляное полотно транспортных сооружений, довольно быстро обнаруживают свою низкую прочность и устойчивость в условиях различного рода сотрясений, ударов, вибраций, которые могут возникать при движении тяжелого грузового автомобильного и железнодорожного транспорта, при работе всевозможных ударных и вибрационных машин по забивке, например, свай или виброуплотнению слоев дорожных одежд и т.п.

Частота вертикальных колебаний элементов дорожной конструкции при проезде грузового автомобиля на скорости 40–80 км/ч составляет 7–17 Гц, а одиночный удар трамбующей плиты весом 1–2 т по поверхности грунтовой насыпи возбуждает в ней как вертикальные с частотой от 7–10 до 20–23 Гц, так и горизонтальные колебания с частотой, составляющей около 60% от вертикальных.

В недостаточно устойчивых и чувствительных к вибрациям и сотрясениям грунтах такие колебания способны вызывать деформации и заметные осадки. Поэтому не только целесообразно, но и необходимо их уплотнять вибрационными или любыми другими динамическими воздействиями, создавая в них колебания, сотрясения и шевеление частиц. И совершенно бессмысленно уплотнять такие грунты статической укаткой, что довольно часто можно было наблюдать на серьезных и крупных автодорожных, железнодорожных и даже гидротехнических объектах.
Кулачковый виброкаток 3412 фирмы HAMM
Кулачковый виброкаток 3412 фирмы HAMM

Многочисленные попытки уплотнить пневмоколесными катками маловлажные одноразмерные пески в насыпях железных и автомобильных дорог и аэродромов в нефтегазоносных районах Западной Сибири, на белорусском участке автодороги Брест–Минск–Москва и на других объектах, в Прибалтике, Поволжье, Республике Коми и Ленинградской обл. не давали требуемых результатов по плотности. Лишь появление на этих стройках прицепных виброкатков А-4, А-8 и А-12 помогло справиться с этой острой в свое время проблемой.

Еще нагляднее и острее по своим неприятным последствиям может оказаться ситуация с уплотнением сыпучих крупнозернистых скально-крупнооблочных и гравийно-галечниковых грунтов. Устройство насыпей, в том числе высотой 3–5 м и даже более, из таких прочных и устойчивых к любым погодно-климатическим проявлениям грунтов с добросовестной их укаткой тяжелыми пневмоколесными катками (25 т), казалось бы, не давало серьезных поводов для беспокойства строителям, к примеру, одного из карельских участков федеральной автомобильной дороги «Кола» (Санкт–Петербург–Мурманск) или «знаменитой» в СССР железнодорожной Байкало-Амурской магистрали (БАМ).

Однако сразу же после пуска их в эксплуатацию стали развиваться неравномерные локальные просадки неправильно уплотненных насыпей, составившие в отдельных местах автодороги 30–40 см и исказившие до «пилообразного» с высокой аварийностью общий продольный профиль железнодорожного полотна БАМа.

Несмотря на схожесть общих свойств и поведения мелкозернистых и крупнозернистых сыпучих грунтов в насыпях, их динамическое уплотнение следует выполнять разными по весу, габаритам и интенсивности вибровоздействий вибрационными катками.

Одноразмерные пески без примесей пыли и глины очень легко и быстро переупаковываются даже при незначительных сотрясениях и вибрациях, но они обладают незначительным сопротивлением сдвигу и очень низкой проходимостью по ним колесных или вальцовых машин. Поэтому уплотнять их следует легкими по весу и крупными по габаритам виброкатками и виброплитами с малым контактным статическим давлением и средним по интенсивности вибрационным воздействием, чтобы не снижалась толщина уплотняемого слоя.

Использование на одноразмерных песках среднего А-8 (вес 8 т) и тяжелого А-12 (11,8 т) прицепных виброкатков приводило к чрезмерному погружению вальца в насыпь и выдавливанию песка из-под катка с образованием перед ним не только вала грунта, но и перемещающейся за счет «бульдозерного эффекта» сдвиговой волны, заметной глазу на расстоянии до 0,5–1,0 м. В итоге приповерхностная зона насыпи на глубину до 15–20 см оказывалась разрыхленной, хотя плотность нижележащих слоев имела коэффициент уплотнения 0,95 и даже выше. У легких виброкатков разрыхленная приповерхностная зона может понизиться до 5–10 см.

Очевидно можно, а в ряде случаев и целесообразно, на таких одноразмерных песках использовать средние и тяжелые виброкатки, но имеющие прерывистую поверхность вальца (кулачковую или решетчатую), что позволит улучшить проходимость катка, уменьшить сдвиг песка и снизить до 7–10 см разрыхляемую зону. Об этом свидетельствует успешный опыт автора по уплотнению насыпей из таких песков зимой и летом в Латвии и Ленинградской обл. даже статическим прицепным катком с решетчатым вальцом (вес 25 т), обеспечившим толщину уплотняемого до 0,95 слоя насыпи до 50–55 см, а также положительные результаты уплотнения этим же катком одноразмерных барханных (мелких и полностью сухих) песков в Средней Азии.

Крупнозернистые скально-крупнообломочные и гравийно-галечниковые грунты, как показывает практический опыт, тоже успешно уплотняются виброкатками. Но вследствие того, что в их составе имеются, а иногда и преобладают крупные куски и глыбы размером до 1,0–1,5 м и более, сдвинуть, расшевелить и переместить которые, обеспечивая тем самым требуемые плотность и устойчивость всей насыпи, не так-то легко и просто.

Поэтому на таких грунтах должны использоваться крупные, тяжелые, прочные и с достаточной интенсивностью виброударного воздействия гладковальцовые виброкатки весом прицепной модели или вибровальцового модуля у шарнирно-сочлененного варианта не менее 12–13 т.

Толщина прорабатываемого слоя таких грунтов подобными катками может достигать 1–2 м. Практикуются же такого рода отсыпки в основном на крупных гидротехнических и аэродромных стройках. В дорожной отрасли они встречаются редко, и поэтому дорожникам нет особой надобности и целесообразности приобретать гладковальцовые катки с весом рабочего вибровальцового модуля тяжелее 12–13 т.

Куда важнее и серьезнее для российской дорожной отрасли является задача уплотнения мелкозернистых смешанных (песок с тем или иным количеством примесей пыли и глины), просто пылеватых и связных грунтов, чаще встречающихся в повседневной практике, чем скально-крупнообломочные и их разновидности.

Особенно много хлопот и неприятностей возникает у подрядчиков с пылеватыми песками и с чисто пылеватыми грунтами, довольно широко распространенными во многих местах России.

Специфика этих непластичных малосвязных грунтов состоит в том, что при высокой их влажности, а таким переувлажнением «грешит» в первую очередь Северо-Западный регион, под влиянием движения автотранспорта или уплотняющего воздействия виброкатков они переходят в «разжиженное» состояние вследствие низкой их фильтрационной способности и возникающего повышения порового давления при избытке влаги.

С понижением влажности до оптимальной такие грунты сравнительно легко и хорошо уплотняются средними и тяжелыми гладковальцовыми виброкатками с весом вибровальцового модуля 8–13 т, для которых уплотняемые до требуемых норм слои отсыпки могут составлять 50–80 см (в переувлажненном состоянии толщины слоев понижаются до 30–60 см).

Если в песчаных и пылеватых грунтах появляются заметное количество глинистых примесей (не менее 8–10%), они начинают проявлять значительную связность и пластичность и по своей способности к уплотнению приближаются к глинистым грунтам, которые совсем плохо или вообще не поддаются деформированию чисто вибрационным способом.

Исследованиями профессора Хархуты Н. Я. показано, что при уплотнении таким способом практически чистых песков (примесей пыли и глины менее 1%) оптимальная толщина слоя, уплотняемого до коэффициента 0,95, может доходить до 180–200% от минимального размера контактной площадки рабочего органа вибромашины (виброплита, вибровалец с достаточными контактными статическими давлениями). С повышением содержания в песке указанных частиц до 4–6% оптимальная толщина прорабатываемого слоя сокращается в 2,5–3 раза, а при 8–10% и более достичь коэффициента уплотнения 0,95 вообще невозможно.

Очевидно, в таких случаях целесообразно или даже необходимо переходить на силовой способ уплотнения, т.е. на использование современных тяжелых виброкатков, работающих в виброударном режиме и способных создавать в 2–3 раза более высокие давления, чем, например, статические пневмоколесные катки с давлением на грунт 6–8 кгс/см2.

Чтобы происходило ожидаемое силовое деформирование и соответствующее уплотнение грунта, создаваемые рабочим органом уплотняющей машины статические или динамические давления должны быть как можно ближе к пределам прочности грунта на сжатие и сдвиг (около 90–95%), но и не превышали его. Иначе на контактной поверхности появятся трещины сдвигов, выпоры и другие следы разрушения грунта, которые к тому же будут ухудшать условия передачи в нижележащие слои насыпи необходимых для уплотнения давлений.

Прочность связных грунтов зависит от четырех факторов, три из которых относятся непосредственно к самим грунтам (гранулометрический состав, влажность и плотность), а четвертый (характер или динамичность прикладываемой нагрузки и оцениваемый скоростью изменения напряженного состояния грунта или, с некоторой неточностью, временем действия этой нагрузки) относится к воздействию уплотняющей машины и реологическим свойствам грунта.

Categories: Без рубрики
8 Июн 2011

Производство щебня с помощью центробежной дробилки, по сравнению со щебнем, традиционно получаемым на конусных дробилках, отличается более изометричной (кубовидной) формой зерен, более высокой насыпной плотностью и прочностью на сжатие, меньшей усадкой при сжатии. Производители щебня вслед за потребителями оценили преимущества использования центробежно-ударной дробилки и при запуске новых линий все чаще приобретают именно их.

В горнорудной промышленности в процессах рудоподготовки центробежно-ударные дробилки еще не получили широкого применения, но перспективы их использования достаточно велики. Основным сдерживающим фактором в использовании центробежных дробилок являлось то, что первые их образцы отличались невысокой надежностью при реализации высокоскоростных режимов вращения ротора, необходимых для получения высоких показателей дробления или измельчения.

Проблемы, в первую очередь, возникали в опорных узлах роторных систем, чувствительных к дисбалансам, вследствие чего невозможность было вращать большие массы с высокими скоростями (выше 70 м/с). Долгое время нерешенным был вопрос с износом рабочих органов. По этим причинам до настоящего времени разрабатывались схемы обогатительных фабрик и дробильно-сортировочных заводов на основе традиционного оборудования, такого как конусные дробилки, шаровые мельницы и др.

Хотя, достаточно хорошо известны несомненные преимущества ударного разрушения горных пород, таких как высокая селективность раскрытия минеральных сростков. Большинство вышеперечисленных проблем удалось решить при использованием воздушной опоры вместо подшипниковых систем, при этом окружные скорости ротора удалось поднять до 100 м/с.

Главным преимуществом центробежно-ударной дробилки по сравнению с другими традиционными типами дробильно-измельчительной техники является их способность производить всухую мелкое дробление, а в комплексе с воздушными классификаторами также измельчение руды до крупности, достаточной для выполнения последующих операций обогащения. Эта особенность центробежно-ударной дробилки позволяет эффективно и даже в ряде случаев практически безальтернативно использовать их в следующих направлениях:

Мелкое дробление руды для целей кучного выщелачивания. Традиционным высокопроизводительным техническим средством, с помощью которого производится дробление прочной руды перед укладкой в штабели для цианидного выщелачивания, являются конусные дробилки.

Эти дробилки позволяют осуществлять только среднее дробление руды (до крупности 25–30 мм). Для достижения высокого извлечения золота такой крупности в большинстве случаев недостаточно, а для некоторых руд такая крупность просто неприемлема из-за крайне низкого извлечения золота. Для повышения извлечения золота и сокращения сроков ведения процесса выщелачивания во многих случаях необходимо мелкое дробление (до крупности порядка 3–5 мм).

Для некоторых типов руд, например, для руды Тасеевского месторождения, необходимо измельчение руды до крупности 0,5 мм, поскольку даже на крупности 1 мм извлечение золота не превышает 50%. Данная крупность является минимальной, которую еще можно применять для процесса кучного выщелачивания золота без необходимости окомкования измельченной руды.

Центробежная дробилка в схеме измельчения золотодобывающего предприятия ‘Зун-Хада’ для снижения крупности питания до 5 мм перед шаровой мельницей
Рис.1. Центробежная дробилка в схеме измельчения золотодобывающего предприятия «Зун-Хада» для снижения крупности питания до 5 мм перед шаровой мельницей (Полиметалл)

Особенностью технологии кучного выщелачивания является необходимость применять только сухое дробление руды. Эффективно осуществлять сухое мелкое дробление крепких руд могут дробилки центробежно-ударного действия, в этом процессе они почти незаменимы. Конкуренцию могли бы составить пресс-валковые дробилки, но они отличаются весьма высокой ценой и быстрым износом валков.

Мелкое дробление руды перед измельчением в шаровых мельницах. Шаровые мельницы являются основным и широко распространенным техническим средством, которое используется для измельчения руды перед ее обогащением. Шаровые мельницы отличаются большими габаритами и массой, соответственно, высокой стоимостью. Как правило, это главный орган обогатительной фабрики, который определяет и ограничивает ее производительность.

Производительность мельницы при достижении одной и той же крупности помола зависит от крупности подаваемого в нее материала, она возрастает при уменьшении его крупности. В то же время крупность используемых в мельнице шаров также зависит от крупности подаваемой на помол руды. Наибольшая производительность мельниц достигаются при подаче в них мелко дробленой руды с крупностью зерен до 3–5 мм. При такой крупности измельчаемой руды нет нужды подавать в мельницу крупные шары, что способствует снижению износа футеровки.

Центробежная дробилка установлена в схеме Качканарского ГОКа
Рис.2. Центробежная дробилка установлена в схеме Качканарского ГОКа

Подготовка руды перед подачей в мельницу в большинстве случаев ведется всухую с использованием на последней стадии дробления высокопроизводительных конусных дробилок больших типоразмеров. Эти дробилки даже при промежуточном грохочении и возврате на додрабливание надрешетного продукта не могут обеспечить мелкого дробления. Крупность подготовленной с их помощью для измельчения руды, как правило, не удается снизить мельче 15–20 мм. Дробилки центробежно-ударного действия способны без проблем дробить руду не только до 5, но при необходимости и до 2–3 мм. Ограничение по минимальной крупности дробления связаны не с возможностями дробилки, а с ограниченной производительностью грохота, используемого в цикле с дробилкой.

Сухое измельчение руды перед сухим обогащением. Руд, которые можно обогащать всухую, и способов сухого обогащения немного, но в европейских странах, где мало площадей для складирования хвостовой пульпы, обогатители настойчиво разрабатывают технику и технологии сухого обогащения различных руд.

Сухое обогащение считается более экономичным в плане отсутствия необходимости сгущать хвостовую пульпу и обезвоживать кек, а также сушить полученный концентрат, если предполагается его сухое использование. В России как пример сухого передела руды можно назвать обогатительную фабрику на Полуночном месторождении (Северный Урал) карбонатных марганцевых руд. Эта руда дробится всухую на центробежно-ударной дробилке до крупности 2 мм и в сухом виде обогащается на магнитных сепараторах.

Измельчение для лучшего раскрытия зерен полезных минералов. Центробежно-ударное дробление и измельчение пород и руд в центробежных дробилках и мельницах по сравнению с разрушением раздавливанием отличается одним важным преимуществом: разделение происходит в первую очередь по ослабленным направлениям, каковыми являются границы между зернами.

При центробежно-ударном измельчении раскрытие зерен рудных минералов и освобождение их от срастаний с зернами пустой породы происходит раньше, чем при других способах измельчения. Особенно хорошо это явление наблюдается, когда рудный минерал имеет существенно более высокую плотность по сравнению с минералами вмещающей породы, и еще лучше, когда рудный минерал отличается ковкостью.

Руды золота и платиноидов в этом плане вне конкуренции. Для достижения одинаково высокого раскрытия зерен благородных металлов конечный размер зерен руды, измельченной центробежно-ударным способом, может быть в 2–3 раза больше, чем при традиционном измельчении в шаровых мельницах, соответственно, энергозатраты на центробежно-ударное измельчение в 1,5–2 раза ниже.

При шаровом измельчении золотых и серебряных руд происходит натирание благородных металлов на шары, что на 5–10% снижает их извлечение в концентрат при гравитационном и флотационном способах обогащения. При центробежно-ударном измельчении «размазывание» ковких металлов практически не происходит. Таким образом, по сумме положительных свойств центробежно-ударное измельчение руд благородных металлов является потенциально наиболее целесообразным.

Центробежно-ударные мельницы – это те же дробилки, в цикле с которыми работают соответствующие классификаторы. Сами дробилки могут работать как всухую, так и на пульпе, но при подаче на измельчение смоченной руды (пульпы) возрастает расход энергии. Классифицирующие устройства, существенно разные при сухом и мокром измельчении, в обоих случаях являются достаточно громоздкими. Именно они являются узким местом в технологии центробежно-ударного измельчения, поскольку требуют нестандартных технических решений. Но принципиальных препятствий к внедрению центробежно-ударных мельниц нет.

Существенным преимуществом отечественных центробежных дробилках, над всеми зарубежными является их более низкая стоимость при таких же и даже более высоких потребительских свойствах.

Categories: Без рубрики
8 Июн 2011

Принцип действия этого сравнительно нового оборудования состоит в следующем. Измельчаемый материал подается сверху в центральное входное отверстие так называемого ускорителя. Он представляет собой цилиндрическую полую конструкцию с радиальными перегородками, вращающуюся вокруг вертикальной оси. Под действием возникающей в результате вращения ускорителя центробежной силы, куски измельчаемого материала двигаются с ускорением от центра к периферии вдоль образуемых перегородками каналов. Материал вылетает из ускорителя в камеру измельчения с линейной скоростью, определяемой частотой вращения и диаметром ускорителя. При соударении кусков материала с неподвижными стенками происходит разрушение материала посредством ударной дезинтеграции. Дополнительному измельчению материала способствует также процесс хаотичного столкновения кусков друг с другом внутри камеры.

Дробление материалов с помощью центробежно-ударных дробилок обладает рядом преимуществ перед другими способами измельчения: предпочтительное разрушение по естественным структурным границам внутри измельчаемых кусков, незначительные сдвиговые деформации внутри однородных фрагментов. Это делает центробежно-ударные дробилки особенно эффективными для получения высокопрочного щебня кубовидной формы, а при измельчении руд позволяет достигнуть «раскрытия» вкраплений полезных компонентов при крупности в 2–3 раза большей, чем в другом измельчительном оборудовании.

При всей привлекательности центробежно-ударных дробилок, до 80-х годов ХХ века существовал ряд технических и «материаловедческих» ограничений, сдерживавших широкое применение реализуемого в них способа дробления, изобретенного еще в начале прошлого века. Для повышения эффективности ударной дезинтеграции необходимо увеличить скорость материала при соударениях, однако это приводило к чрезмерному росту ударно-абразивного износа рабочих органов и снижению ресурса подшипниковых узлов привода дробилки.

Проблема износа была в значительной степени решена использованием принципа самофутеровки. Новые ускорители, изобретенные в 80-х годах новозеландцами Брайаном Бэйтли (Bryan Baitley) и Джимом Макдоналдом (Jim McDonald), были сконструированы так, что вызывающий ударно-абразивный износ материал соприкасался в основном не с поверхностью рабочих органов дробилки, а со слоем самого измельчаемого материала. В процессе работы материал залегает в уплотненном состоянии в специальных карманах, расположенных, как в самом ускорителе (рис. 1), так и в камере измельчения (рис. 2). В результате абразивно-ударное воздействие со стороны измельчаемого материала на канал ускорителя происходит в основном только при столкновении материала с удерживающей самофутеровку так называемой «лопаткой», расположенной в конце канала. Лопатку изготавливают с включением вставок из твердого сплава и восстанавливают периодической наплавкой специальными электродами.
Схема движения материала в ускорителе центробежных дробилок
Рис. 1. Схема движения материала в ускорителе центробежных дробилок

1 – рассекатель; 2 – подкладной лист; 3 – самофутерющийся карман; 4 – твёрдосплавная лопатка; 5 – сход материала с ускорителя; 6 – корпус ускорителя

Футеровочные карманы в камере измельчения
Рис. 2. Футеровочные карманы в камере измельчения

Что же касается проблемы обеспечения приемлемого ресурса подшипниковых узлов, то она по-прежнему не имеет удовлетворительного решения в рамках традиционных схем механического привода с фиксированной подшипниками осью. Это связано с тем, что узел, обеспечивающий вращение роторной части центробежно-ударной дробилки, должен удовлетворять следующим требованиям:

выдерживать большие ударные нагрузки, возникающие при передаче импульса кусками материала, как в момент попадания в ускоритель, так и в момент выхода из него;
работать в условиях сильной массовой несбалансированности вращающейся системы и, как следствие, выдерживать огромные перекашивающие усилия, связанные с воздействием на подшипниковые опоры гироскопических моментов, вызванных действием внешних моментов на вращающуюся часть дробилки.

В свою очередь несбалансированность ускорителя может быть вызвана следующими факторами:

неравномерное залегание футерующего материала в каналах ускорителя из-за чрезмерной влажности исходного материала, особенно с содержанием глины;
заклинивание крупного куска в канале и забивание канала из-за нарушения работы питающего грохота;
неравномерный износ или разрушение лопатки крупным куском или посторонним металлическим предметом, пропущенным металлоуловителем;
неравномерное питание, приводящее к неравности потоков материала в каналах ускорителя;
превышение допустимой производительности в подаче материала в ускоритель, что может привести к «завалу» дробилки.

На практике, все вышеперечисленное приводит к невозможности создания дробилки на традиционной подшипниковой опоре (с фиксированной осью вращения), обладающей одновременно большой производительностью, высокой скоростью вылета кусков и способной перерабатывать материал большой исходной крупности. В дробилках на подшипниковой опоре крупность кусков исходного материала ограничена размером 40 мм, диаметр ускорителя не превышает одного метра, а максимальная частота вращения ускорителя составляет 1500 об/мин, ограничивая линейную скорость измельчаемого материала на выходе из ускорителя значениями 60–70 м/с для максимальных типоразмеров дробилок.

При таких ограничениях область применения ударной дезинтеграции сводится, в основном, к получению кубовидного щебня, а измельчение руды до крупности ниже 5–10 мм становится неэффективным вследствие низкого коэффициента измельчения и высокой степени возврата на додрабливание. Поэтому центробежные дробилки на традиционных подшипниковых опорах не могут составить серьезную конкуренцию конусным дробилкам мелкого дробления и стержневым мельницам в существующих схемах рудоподготовки.

Для преодоления ограничений, накладываемых на скорость вращения ускорителей в дробилках с традиционными подшипниковыми опорами, была применена так называемая воздушная (газостатическая) опора (рис. 3), первые упоминания о которой (и соответствующие патенты) относятся к началу ХХ века
.
Воздушная опора центробежных дробилок
Рис. 3. Воздушная опора центробежных дробилок

1 – Статор; 2 – ротор; 3 – карданный вал; 4 – электродвигатель;
5 – воздушный вентилятор; 6 – вал; 7 – ускоритель; 8 – концевая лопатка ускорителя;
9 – камера измельчения; 10 – предохранительный узел на случай аварийного отключения воздуха; 11 – крышка опорной части; 12 – патрубок для выгрузки дроблённого продукта;
13 – центробежная муфта; 14 – пыльник

Чтобы яснее представить себе преимущества, которые дает использование газостатической (воздушной) опоры, остановимся подробнее на ее конструкции и свойствах. Опора представляет собой два вложенных друг в друга кольцевых сферических сегмента (ротора и статора), в зазор между которыми типовым высоконапорным вентилятором нагнетается воздух. Создаваемая избыточным давлением воздуха подъемная сила заставляет ротор (с закрепленным на нем ускорителем) всплыть. Необходимая величина воздушного зазора обеспечивается регулировкой хода в шлицевом соединении одной из вилок карданного вала, передающего крутящий момент от двигателя, расположенного соосно с ротором. Наличие у карданного вала двух карданных шарниров, обеспечивает независимость положения геометрической оси ротора относительно оси вращения двигателя.

При включенном вентиляторе всплывший подвижный узел дробилки (ротор и ускоритель) находится в состоянии покоя. При этом вес ротора и ускорителя плюс сила натяжения карданного вала уравновешиваются подъемной силой, создаваемой избыточным давлением воздуха. Поскольку сила, действующая со стороны воздуха на сферическую поверхность ротора, везде направлена к центру сферы, то центр сферы фактически оказывается своеобразной «виртуальной» точкой опоры (подвеса) ротора. Это означает, что под действием любых сил, не проходящих через центр сферы (т.е. сил, создающих момент относительно точки опоры), ротор отклоняется от исходного положения так, как если бы он имел шарнирное закрепление в центре сферы. Иными словами, образуется воздушная опора, при которой ротор может совершать вокруг центра сферы колебательные движения, не касаясь при этом статора.

Конечно, наличие связи фиксированной длины в виде карданного вала приводит к соответствующему уменьшению величины воздушного зазора при любом развороте ротора. Однако уменьшение это незначительно, а перемещение точки подвеса ротора происходит вдоль вертикальной оси (подобно шарниру в кулисе кривошипно-шатунного механизма).

При любом отклонении оси ротора от вертикали (а вернее, отклонении центра верхней крестовины карданного вала от прямой линии, соединяющей центр сферы и центр нижней крестовины) равнодействующая приложенных к верхней крестовине сил оказывается отличной от нуля величиной, направленной к оси вращения двигателя. Создаваемый при этом момент относительно виртуальной точки опоры ротора стремиться вернуть ось ротора в исходное вертикальное положение.

После приведения во вращение подвижный узел дробилки фактически становится гироскопом с точкой опоры в центре сферы, а потому обладает всеми свойствами, характерными для так называемых «тяжелых» (т.е. закрепленных в точке, не совпадающей с центром масс) гироскопов с тремя степенями свободы. Полное описание движения такой системы, учитывающее реальные механические свойства всех входящих в нее элементов, весьма сложно. Оно требует совместного решения более 30 нелинейных дифференциальных уравнений, поэтому ограничимся качественным описанием его особенностей, вытекающих из основных свойств гироскопа:

трехстепенной гироскоп (т.е. гироскоп, ориентация мгновенной оси вращения которого вокруг единственной точки опоры ничем не ограничена) в отсутствие внешних воздействий сохраняет положение оси вращения неизменным;
при несовпадении оси вращения с главной осью инерции гироскопа последняя равномерно вращается вокруг оси вращения, описывая круговую коническую поверхность с вершиной в точке опоры (подобно оси вращающегося волчка).

Такое движение носит название регулярной прецессии, а угол при вершине описываемого конуса называется углом нутации.

Применительно к нашему случаю, когда главная ось инерции (совпадающая в первом приближении с геометрической осью подвижного узла дробилки) близка к вертикальной оси вращения двигателя, угол нутации в отсутствие внешних возмущений будет весьма мал. Это означает, что наш гироскоп вращается вокруг своей главной оси инерции, положение которой остается неизменным во времени.

Наличие у подвижной системы несбалансированной массы приводит к смещению ее центра масс относительно геометрической оси системы. Учитывая тот факт, что главная ось инерции всегда проходит через центр масс системы, приходим к выводу о том, что при наличии дисбаланса роторная часть дробилки будет вращаться таким образом, что геометрическая ось ротора окажется смещенной относительно фактической оси вращения на величину смещения центра масс. При этом «пробой» воздушной опоры, т.е. касание ротором статора, произойдет при смещении центра масс подвижного узла на величину радиальной проекции воздушного зазора между ними. Если учесть, что масса подвижного узла дробилки составляет около 1000 кг, а радиальный зазор между ротором и статором не менее двух миллиметров, то оказывается, что несбалансированная масса, расположенная на периферии ускорителя диаметром 1,25 м, может достигать трех килограммов, не приводя к «пробою» воздушной опоры и нарушению работы дробилки.

В действительности реакция «гироскопа» на наличие массового дисбаланса оказывается более сложной. Дело в том, что при действии на гироскоп внешнего момента, не совпадающего по направлению с осью вращения (т.е. опрокидывающего момента), гироскоп стремится развернуть свою ось вращения в плоскости, проходящей через ось вращения перпендикулярно той, в которой лежат точка опоры и сила, вызывающая момент. Скорость прецессии пропорциональна величине внешнего момента и обратно пропорциональна кинетическому моменту гироскопа.

В нашем случае, возникающее из-за наличия дисбаланса смещение геометрической оси ротора относительно статора приводит к неравномерности воздушного зазора. Из-за этого равнодействующая сил, действующих со стороны воздуха на ротор, не проходит более через центр сферы и создает внешний момент. В результате возникающей прецессии будет происходить разворот оси вращения ротора вокруг центра сферы. И хотя в итоге касание ротора о статор может не происходить даже при наличии дисбалансов, превышающих указанное выше значение, возникновение прецессии является, как показывает опыт, весьма нежелательным.

Причина этого кроется в том, что вышеупомянутая скорость прецессии пропорциональна приложенному внешнему моменту. И если каким-либо образом препятствовать возникшей прецессии, то со стороны гироскопа на препятствующий объект начинает действовать гироскопический момент, достаточный для поддержания гироскопом требуемой скорости прецессии «любой ценой». Величина гироскопического момента при этом ограничена лишь полным моментом количества движения (кинетическим моментом), то есть общим запасом кинетической энергии гироскопа, частота вращения которого может даже упасть до нуля (если запас его энергии не пополняется извне) при возникновении на пути его прецессии непреодолимой преграды. В больших дробилках, когда вращение ускорителя обеспечивается двигателем мощностью в несколько сотен киловатт, возникающие в случае прецессии гироскопические моменты могут достигать гигантских величин.

В этом кроется, пожалуй, основная причина невозможности построения мощных центробежно-ударных дробилок с использованием традиционных подшипниковых опор. Уже при дисбалансах в несколько сотен грамм, нагрузки на подшипники становятся настолько большими, что это серьезно снижает время их безаварийной работы.

Использование сферической воздушной опоры позволяет избежать проблем, связанных с возникновением гироскопических моментов, поскольку используемая кинематическая схема не накладывает ограничений на движение трехстепенного гироскопа. Следует отметить, что в реально существующей конструкции центробежной дробилки регулярная прецессия большой амплитуды все же остается нежелательным явлением. Проявляется это в моменты прохождения резонансных частот при разгоне и остановке дробилки. Однако конструктивные решения, а также тщательная настройка центробежной дробилки в процессе производства, позволяют с успехом преодолевать проблемы разгона и остановки, а в процессе работы выдерживать на порядок большие дисбалансы по сравнению с дробилками на подшипниковой опоре.

Categories: Без рубрики
8 Июн 2011

В широком смысле, контроль качества строительства начинается в США задолго до собственно строительства. Во-первых, существующая система лицензирования инженеров автоматически допускает к инженерному руководству проектированием и строительством только людей, имеющих необходимую подготовку и осведомленных о мере ответственности за свою работу.

Во-вторых, система аккредитации лабораторий, сертификации их персонала и калибровки оборудования обеспечивает наличие специалистов, осуществляющих контроль качества, и нужных для этого приборов.

Наконец, для контроля одного и того же показателя, как правило, используют несколько методов и приборов, обеспечивая конкуренцию между разработчиками, а тем самым – постоянное совершенствование этих приборов и методов.

Сертификация лабораторий

Принято различать два понятия: контроль качества (QC – quality control) и гарантия (поддержка) качества (QA – quality assurance). Как известно, под контролем качества понимают постоянную или периодическую инспекцию на каждой стадии производства от исходных материалов (горной породы, нефти и т.д.) до конечного продукта, например, асфальтобетонного покрытия. Под гарантией (или поддержкой) качества (QA) в США понимают планируемые систематические действия, направленные на обеспечение стандартного уровня лабораторного контроля качества. Эти действия в основном сводятся к аккредитации лабораторий и сертификации технических работников, осуществляющих контроль качества. Порядок их проведения определяет Федеральная Дорожная Администрация.

Федеральная Дорожная Администрация США с 1995 г. установила новый порядок аккредитации лабораторий и сертификации сотрудников. Штаты разделены на несколько групп. Входящие в данную группу штаты совместно занимаются аккредитацией и сертификацией и обучением. Например, в западный регион входят штаты Аляска, Аризона, Айдахо, Вашингтон, Гавайи, Калифорния, Колорадо, Монтана, Невада, Орегон и Юта. Вместе с тем, любой штат может сформулировать собственные требования к квалификации персонала лаборатории. Техническое руководство аккредитацией лабораторий штатов по поручению Федеральной Дорожной Администрации осуществляет подкомитет AASHTO по материалам через центральную лабораторию Национального института стандартов и технологий (NIST).

Сначала аккредитуются центральные лаборатории штатов. Заявка с просьбой об аккредитации поступает из центральной лаборатории штата в Федеральную Дорожную Администрацию. В ней указывается, по каким видам строительных материалов и по каким методам их испытаний центральная лаборатории данного штата хотела бы быть аккредитованной. Из лаборатории Федеральной Дорожной Администрации или, по ее поручению, из центральной региональной лаборатории в центральную лабораторию штата поступают «анонимные» образцы материалов (битума, битумной эмульсии, щебня и т.д.). Основные стандартные показатели их свойств должны быть определены и спустя короткий промежуток времени отправлены в центральную лабораторию, где статистически обрабатываются результаты, полученные в различных лабораториях. Основываясь на среднем значении, дисперсии и требуемой надежности, центральная лаборатория выставляет лаборатории данного штата оценку по пятибалльной шкале. Оценка выставляется в зависимости от отклонения полученного результата от среднего значения. Среднее квадратическое отклонение зависит от вида испытания и прибора. Если результат, полученный в лаборатории, отличается от среднего в пределах одного среднеквадратического отклонения, выставляется оценка 5, в пределах полутора – оценка 4, в пределах двух – оценка 3. При оценке не менее трех баллов данная лаборатория получает право на проведение испытаний в течение одного года.

Кроме того, каждые 18 месяцев в лабораторию приезжает инспектор из центральной лаборатории, который проверяет приборы (начиная с термометра), методику испытаний и ведение записей в лабораторных журналах и на компьютерах. Если, например, показатели свойств битумной эмульсии, полученные в лаборатории дорожно-транспортного департамента штата, отклонились от средних для всех штатов больше допустимых пределов отклонения, эта лаборатория лишается права работать с битумными эмульсиями и департамент будет вынужден за счет своего бюджета нанять для этой цели частную лабораторию минимум на один год.

Аналогично этому центральная лаборатория штата проводит аккредитацию региональных лабораторий этого штата и частных лабораторий, претендующих на право проведения испытаний и контроля качества. Аккредитация является платной. Инспектор оценивает размеры помещения лаборатории, его освещенность, безопасность, обеспеченность водой, электроэнергией, помещениями для приготовления и хранения образцов и т.д. Проверяется наличие и состояние оборудования и документация о его калибровке. Инспектор составляет акт об имеющихся недостатках и дает 30 суток на их исправление. Повторная инспекция является окончательной. Затем в лабораторию посылают образцы материалов для испытаний.

Получив результаты, оценивают способность лаборатории проводить те или иные испытания. Результаты испытаний, полученные в разных лабораториях, оценивают статистическими методами. Например, в 2004 г. в штате Висконсин проводилась аккредитация 78 лабораторий. При испытании одного и того же битума коэффициент вариации (отношение среднеквадратического отклонения к среднему значению показателя) составлял: для вязкости при 135°C – 4%, для потери массы после прогрева при 163°C – 14%, для модуля упругости битума при минус 18°C – 5%, для предельного относительного удлинения при разрыве при минус 18°C – 7% и т.д. Чтобы быть аккредитованной на проведение испытаний битума в этом штате, лаборатория должна была получить результаты, отличающиеся от средних не больше, чем на удвоенные значения этих коэффициентов вариации.
Улица в г. Санта-Моника: асфальтобетонное покрытие мирно сосуществует с цементобетонным
Улица в г. Санта-Моника: асфальтобетонное покрытие мирно сосуществует с цементобетонным

К персоналу лаборатории предъявляется ряд требований. Выделены 5 областей, по которым проводится сертификация техников-лаборантов: каменные материалы, асфальтобетон, цементобетон, насыпь и основание дорожной одежды, контроль степени уплотнения в полевых условиях. Каждый из техников-лаборантов должен сдать письменный и практический экзамен. Разрешается 4 попытки сдать письменный экзамен в течение полугода. Затем проводится практический экзамен. В частности, техник, специализирующийся на асфальтобетоне, должен уметь отобрать образцы горячей смеси, определить содержание в ней битума; определить истинную плотность асфальтобетона (сумма масс каменного материала и битума, деленная на сумму их объемов – без учета объема межзерновых пор; в США эту величину называют максимальной теоретической плотностью асфальтобетона); определить объемную долю воздушных пор после стандартного уплотнения, определить зерновой состав минерального материала после экстрагирования битума; внести необходимые коррективы в приготовление смеси и в процесс ее укладки и уплотнения. Сдав экзамен, он получает сертификат, действительный 3 года, но ежегодно должен проходить однодневный тренировочный курс, знакомясь с новой информацией в этой области. Руководитель группы или лаборатории контроля качества дорожно-строительных материалов должен иметь не менее трех лет опыта работы в этой области.

Например, департамент транспорта штата Калифорния (Caltrans) имеет 12 региональных лабораторий, в которых в 2004 г. работали 32 штатных сертифицированных контролера качества в области дорожного строительства. Они не имеют права проводить других испытаний во избежание конфликта интересов. Всего в штате аккредитовано 243 лаборатории, из которых 64 принадлежат департаменту транспорта, 14 – городам и графствам и 165 являются частными. Техникам-лаборантам этих лабораторий на 2004 год было выдано 2112 сертификатов, причем один техник (или инженер) может иметь несколько сертификатов, скажем, один по асфальтобетону, другой – по каменным материалам, а третий – по грунтам.
Очертание бортового камня на пешеходной дорожке. Слева на бетонном тротуаре видна профрезерованная ребристая полоса, позволяющая слепому палкой нащупать начало спуска к пешеходной дорожке.
Очертание бортового камня на пешеходной дорожке. Слева на бетонном тротуаре видна профрезерованная ребристая полоса, позволяющая слепому палкой нащупать начало спуска к пешеходной дорожке

Большинство частных лабораторий принадлежат строительным подрядчикам, например асфальтобетонным заводам. Вплоть до 1970-х годов качество контролировал, главным образом заказчик, следя за тем, чтобы средний показатель (например, плотности) был близок к заданному. В 1980-х по инициативе штатов Нью-Джерси и Пенсильвании в стандартах многих штатов среднее значение и мера изменчивости показателя были скомбинированы, чтобы оценить уровень качества с помощью коэффициента вариации и уровня надежности.

Оплату выполненных работ поставили в зависимость от коэффициента вариации, чтобы уменьшить разброс толщины, плотности, содержания битума и других показателей, сильно влияющих на долговечность дорожного покрытия. Соответственно, подрядчики стали интенсивно заниматься контролем качества, а заказчики параллельно контролировали известные им критические параметры. Например, в штате Массачусетс асфальтовая группа центральной лаборатории штата во главе с к.т.н. Н.Б. Перловой с каждых 20 000 т смеси отбирала пробу, экстрагировала битум и определяла его вязкость и пенетрацию, чтобы контролировать степень термоокислительного старения вяжущего во время приготовления смеси и ее хранения в бункере. Скажем, при вязкости исходного битума АС-20, равной 200 Па•сек при 60°C, и его пенетрации 60·10-1 мм вязкость битума, экстрагированного из смеси, не должна превышать 800 Па•сек, а его пенетрация должна быть больше 50·10-1 мм. В противном случае даже хорошо уплотненное покрытие будет недолговечным вследствие старения битума. Отметим, что добавление значительного количества старого асфальтобетона в смесь существенно осложняет контроль этого важного показателя.

Недавно уложенное асфальтобетонное покрытие на городской улице. Поперечный профиль поверхности покрытия представляет собой не отрезок прямой, как в России, а выполнен в виде квадратной параболы для увеличения скорости стока дождевой воды в боковую канаву ,выполненную вместе с бортовым камнем в монолитном цементобетоне.
Недавно уложенное асфальтобетонное покрытие на городской улице. Поперечный профиль поверхности покрытия представляет собой не отрезок прямой, как в России, а выполнен в виде квадратной параболы для увеличения скорости стока дождевой воды в боковую канаву, выполненную вместе с бортовым камнем в монолитном цементобетоне
Методы и приборы для контроля степени уплотнения грунта

В США насыпи начали уплотнять послойно с 1925 г., чтобы повысить прочность, уменьшить водопроницаемость и последующую осадку грунта. Однако требования к степени уплотнения грунта к этому времени не были сформулированы. Поэтому когда вблизи Лос-Анджелеса наводнение размыло земляную дамбу, предъявить претензии к низкому качеству работ было некому – отсутствовали критерии качества уплотнения. Под влиянием этих обстоятельств полевой инженер бюро водоснабжения г. Лос-Анджелеса Ральф Проктор (R. R. Proctor) в 1933 г. предложил метод оценки степени уплотнения и опубликовал несколько статей на эту тему в журнале «Engineering News Record». Основные положения этого метода сохранились в современных нормативных методах оценки степени уплотнения грунтов, принятых в разных странах, в том числе в России.

Степень возможного уплотнения грунта, прежде всего, зависит от распределения его частиц по размерам и от формы частиц: если в нем имеются как крупные, так и мелкие зерна, помещающиеся внутри пор между крупными, возможная плотность увеличивается. Чем больше механическая работа, затраченная на уплотнение, тем выше достигаемая плотность грунта. Наконец, при одной и той же затраченной работе на уплотнение данного грунта получаемая плотность зависит от влажности грунта во время уплотнения. Совместное влияние перечисленных факторов осложняет оценку степени уплотнения. По предложению Проктора, для каждого грунта сначала в лабораторных условиях при одинаковой для всех грунтов работе уплотнения выявляют ту плотность, до которой следует стремиться его уплотнить в полевых условиях, а затем измеряют показатель плотности, достигнутый в поле, и сравнивают его с полученным в лаборатории.

Проктор предложил использовать для оценки не плотность (влажного) грунта ρ = M/V (массу единицы объема грунта), а так называемую плотность скелета грунта – массу твердых частиц, находящихся в единице объема грунта (по-английски – dry density – отсюда индекс d). Это принципиально важно. В самом деле, цель уплотнения – сблизить между собой грунтовые зерна так, чтобы они образовали систему, хорошо воспринимающую внешнюю нагрузку. Чем больше масса зерен в данном объеме грунта, тем теснее расположены зерна и тем лучше этот грунт укатан.

Масса грунта М состоит из массы частиц Ms и массы воды Mw, а масса воздушных пор Ma пренебрежимо мала: M = Ms + Mw. Разделив обе части этого равенства на объем грунта V, получаем ρ = ρd ·(1+w), где w = Mw / Ms – влажность, равная отношению массы воды к массе частиц. Значит, отобрав образец грунта определенного объема и взвесив его, можно найти плотность грунта ρ = M / V. Затем после высушивания до постоянного веса находят его влажность и вычисляют плотность скелета грунта по формуле:

(1)

Этой формулой непременно пользуются при всех методиках контроля степени уплотнения.

Однако масса частиц, находящихся в единице объема грунта, зависит и от плотности материала частиц, которая может изменяться в пределах ρs = 2,0–3,3 г/см3 в зависимости от минералогического состава грунтов, но обычно составляет ρs =2,5–2,8 г/см3. Очевидно, что объем грунта состоит из объема твердых частиц Vs, воды Vw и воздушных пор Va: Vs+Vw+Va = V. Так как объемная доля частиц в грунте равна Vs/ V= ρs / ρd , а объемная доля воды равна Vw / V= ρd / ρw, то получается следующая зависимость плотности скелета грунта от средней плотности материала его частиц , влажности w, а также объемной доли воздушных пор ca = Va / V:

(2)
где ρw – плотность воды (около 1 г/см3 )

При одной и той же степени уплотнения для грунта с более «тяжелыми» частицами плотность скелета ρd будет больше. В связи с этим было бы удобнее принять в качестве меры плотности сложения частиц грунта не плотность скелета, а объемную долю частиц в грунте, равную ρd / ρs , но по традиции продолжают использовать плотность скелета грунта ρd .

Физически процесс уплотнения состоит в вытеснении воздуха из грунта. Вода при уплотнении укаткой, трамбованием или вибрацией не успевает отжаться из зоны контакта между частицами, поскольку для ее фильтрации сквозь тонкие поры требуется определенное время. Работа уплотнения уходит на преодоление трения между частицами и их перемещение. Пока влажность грунта мала, добавление в него воды облегчает перемещение частиц относительно друг друга и способствует их более тесной укладке при той же затраченной работе. В результате с увеличением содержания воды в образце грунта до определенного предела плотность скелета увеличивается. При этом в грунте существует связанная система воздушных пор, сообщающихся с атмосферой, объем которых постепенно убывает при вытеснении воздуха в атмосферу. Но при чрезмерной влажности смазывающий эффект уже не увеличивается, а вода препятствует сближению частиц. В итоге зависимость плотности скелета от влажности грунта имеет максимум (рис. 1). Дальнейшее увеличение влажности приводит не к сближению частиц, а к их раздвижке водой.
Зависимость плотности скелета грунта от влажности, получаемая при стандартном уплотнении

Рис. 1 Зависимость плотности скелета грунта от влажности, получаемая при стандартном уплотнении.

Находящиеся в ней пузырьки воздуха замкнуты, т. е. не связаны между собой и не сообщаются с атмосферой. Поэтому при одинаковой затраченной на уплотнение механической работе наибольший эффект уплотнения получается при некоторой оптимальной влажности wopt, которой соответствует максимальная плотность скелета грунта ρd max. Эти понятия были введены Р. Проктором.

Процедура лабораторного испытания по Проктору состоит в том, что грунт уплотняют ударами падающего груза в металлическом стакане при разных влажностях и находят оптимальную влажность стандартного уплотнения и соответствующую ей максимальную плотность скелета грунта при стандартном уплотнении. Приведенные на рис. 1 данные соответствуют стандартному уплотнению по Проктору: диаметр металлического стакана 10 см, образец уплотняется в 3 слоя толщиной по 4 см каждый, груз массой 2,5 кг сбрасывают 25 раз с высоты 30,5 см, испытания проведены при пяти различных влажностях грунта. При этом диаметр плоского основания трамбовки равен 5 см, т. е. он вдвое меньше диаметра стакана с образцом грунта.

Это принципиально важно, поскольку после каждого удара груз смещают по кругу, и последующий удар наносят по новому месту. При этом обеспечивается возможность возникновения в грунте сдвиговых деформаций, моделирующих условия уплотнения в поле. Удары равномерно распределены по поверхности образца. Отметим, что Н.Н. Иванов и М.Я. Телегин, разработавшие на основе метода Проктора стандарт для СССР (переизданный в ГОСТ 22733-77), внесли, к сожалению, изменение – диаметр трамбовки приняли равным внутреннему диаметру стакана. Это повлекло за собой изменение схемы нагружения – образец находится в условиях однородного напряженного состояния без возможности сдвиговой деформации с боковым выпором грунта.

Описанный метод уплотнения по Проктору нормирован и в настоящее время и в AASHTO T 99-94. Примеру на рис. 1 соответствует средняя плотность частиц грунта ρs = 2690 кг/м3, оптимальная влажность wopt = 0,132 (13,2 %), максимальная плотность скелета при стандартном уплотнении ρd max = 1890 кг/м3. При влажностях меньших оптимальной, на левой восходящей ветви кривой (так называемая сухая ветвь) в грунте существует сообщающаяся с атмосферой система связанных воздушных пор. Напротив, в грунте, уплотненном при влажности выше оптимальной (так называемая влажная ветвь кривой), существует гидравлически непрерывная поровая вода, внутри которой имеются воздушные пузырьки. При оптимальной влажности происходит переход от системы сообщающихся между собой и с атмосферой воздушных пор к системе сообщающихся пор, заполненных водой. В данном примере этот переход происходит при объемной доле воздушных пор ca = 0,0475 (4,75 %), что нетрудно проверить по формуле (2). В правой верхней части рис. 1 показан отрезок пунктирной кривой, построенный по формуле (2) при ca = 0 для идеального случая отсутствия воздушных пор в уплотненном грунте. Получается, что в данном случае после стандартного уплотнения при оптимальной влажности твердые частицы занимали (1890/2690)100 = 70,30 % объема грунта, вода 0132 • 1890/1000 = 24,95 % и воздух 4,75 %.

Максимальная плотность скелета , найденная при стандартном уплотнении, и является той величиной, в зависимости от которой необходимая степень плотности грунта нормируется, задается в проекте и контролируется при строительстве. В зависимости от вида сооружения, глубины расположения слоя грунта и условий его работы необходимую плотность скелета задают равной 95–100 % от максимальной стандартной. Для экономии энергии и с целью предотвращения возможного снижения плотности скелета грунта в процессе эксплуатации дороги под влиянием природных факторов стремятся его уплотнять при влажности близкой к оптимальной wopt.

Во время Второй мировой войны корпус военных инженеров США, применяя метод Проктора при строительстве дорог и аэродромов, внес изменения в массу груза и высоту его падения, стремясь повысить требуемую плотность. Масса груза была увеличена до 4,54 кг, высота падения до соприкосновения с поверхностью слоя – до 45,7 см, число слоев – до 5. С увеличением работы плотность скелета увеличивается, а оптимальная влажность уменьшается. На рис. 2 показано влияние изменения количества ударов от 25 до 50 на кривую уплотнения. Точки максимума плотности скелета лежат на пунктирной кривой, примерно параллельной теоретической кривой, соответствующей нулевой воздушной пористости. В дальнейшем вносились другие изменения, отраженные в действующем стандарте T 180-93. В частности, диаметр уплотняемого образца, масса груза, число и толщина слоев, а также число ударов были поставлены в зависимость от максимальной крупности зерен. Заказчики имеют право выбора между стандартами Т 99-94 и Е 180-93.
Зависимость плотности скелета грунта от влажности при различной работе уплотнения.

Рис. 2. Зависимость плотности скелета грунта от влажности при различной работе уплотнения.

При контроле в полевых условиях определяют плотность грунта ρ и его влажность w , рассчитывают по формуле (1) плотность скелета грунта ρd и, сравнив ее с максимальной стандартной, судят о качестве производства работ. Было предложено много приборов для полевого определения плотности и влажности грунта. Рассмотрим вкратце наиболее распространенные из них. По-прежнему используют метод отбора цилиндрического образца известного объема вдавливанием в земляное полотно пробоотборника с режущей кромкой, если грунт достаточно связный, чтобы извлечь образец. Другим широко распространенным методом является испытание «по методу замещения песком», при котором в уплотненном слое грунта выбуривают образец диаметром примерно 10 см и глубиной 15 см. Образец грунта извлекают из шурфа и взвешивают. Затем, заполняя шурф песком, определяют его точный объем. Зная плотность засыпанного песка и измеряя его засыпаемое количество, рассчитывают объем шурфа. Исходя из массы извлеченного материала и объема шурфа, определяют плотность грунта.

Эти полевые методы определения плотности влажного грунта весьма трудоемки и требуют больших затрат времени. Не лучше обстоит дело с и полевым определением влажности. Так как влажность выражается в процентах по массе сухого грунта, пробу грунта на влажность приходится высушивать, причем при температуре не выше 105°C, чтобы не выжигались органические вещества, входящие в состав некоторых частиц. В лабораторных условиях для этого издавна используется специальная электрическая печь, и в зависимости от свойств грунта может потребоваться высушивание до постоянного веса в течение нескольких часов. В полевых лабораториях используют электропечи с форсированным режимом высушивания, микроволновые печки либо выжигание высушиванием в горящем спирте с последующим внесением поправок. Такими путями удается сократить время высушивания до 30–45 мин. Операционный контроль не поспевает за строительством и приходится ограничиваться небольшим количеством образцов.

Как вспомогательное средство, применяют портативный пружинный пенетрометр Проктора с набором игл различного диаметра для грунтов разной крупности. Измеряемое пружинным динамометром сопротивление пенетрации зависит как от плотности, так и от влажности, но если плотность найдена другим методом, то можно оценить влажность, для чего требуется предварительная калибровка при разных плотностях. В результате получили применение полевые комплекты, в которых сочетаются разные методы, типа распространенного в России прибора Ковалева, разработанного 50 лет назад Н.Н. Ковалевым на кафедре дорожно-строительных материалов Киевского автодорожного института.

Для определения влажности грунта независимо от его плотности был разработан прибор, в котором использована реакция хлористого кальция с водой, продуктом которой является ацетилен. Измерив давление ацетилена, можно определить влажность в течение 5 минут, но при испытании глинистого грунта он должен быть тщательно измельчен во избежание ошибки. Методика нормирована в стандарте AASHTO T 217. Образец грунта массой не более 20 грамм помещают в камеру с манометром. Портативные приборы с таким принципом работы, например, S-242 (The Speedy® Moisture Testing Kit) широко используют в настоящее время.

Categories: Без рубрики
8 Июн 2011

Главными экспертами этого важнейшего качества дороги, испытывающими непосредственно на себе все достоинства и недостатки ровного или «корявого» покрытия, являются в первую очередь водители и пассажиры автомобильного транспорта, затем, конечно же, автомобиль и сама дорога, быстро выходящие из строя при своих перегрузках на неровных покрытиях и требующие немалых затрат на свои ремонты.

Поэтому в России нормативные межремонтные сроки службы дорожных покрытий устанавливают по моменту достижения ими предельно допускаемого эксплуатационного состояния, оцениваемого их ровностью. Значения последней взаимоувязаны с безопасностью движения и проектным уровнем надежности дорожной конструкции в целом. Например, при уровне надежности 0,95 (дорога I категории) неровности на покрытии по толчкомеру ТХК-2 на автомобиле УАЗ не должны быть больше 80–100 см/км, а при надежности 0,90 – не более 170 см/км (III категория). В противном случае покрытие должно быть поставлено на ремонт.

На рис. 1 показана расчетная схема и аналитические зависимости для определения силы динамического воздействия колеса автомобиля на поверхность покрытия при наличии на ней одной из часто встречаемых неровностей в виде впадины, выбоины или ямы. Уместно заметить, что такие неровности глубиной до 6–10 мм (в среднем 8 мм) вполне легально могут быть на покрытиях российских дорог, ибо СНиП 3.06.03-85 допускает их, но в количестве не более 10 %.
Схема воздействия колеса автомобиля на дорожное покрытие в момент прохождения выбоины.

Рис. 1. Схема воздействия колеса автомобиля на дорожное покрытие в момент прохождения выбоины.

Грузовой автомобиль при весе заднего моста с колесами всего около 2–3 % от его общего веса с грузом при проезде на скорости 60 км/ч этой неровности шириной или диаметром 0,5 м воздействует на покрытие с максимальной динамической силой, превосходящей статическую нагрузку на эти колеса примерно в 1,5 раза (коэффициент динамичности Kd = 1,45). При неровностях большей глубины или высоты эта сила возрастет еще значительнее.

Асфальтобетонные покрытия, как правило, долго не выдерживают таких многократно повторяющихся перегрузок, так как нормативное значение коэффициента динамичности, принимаемое при прочностных расчетах дорожной одежды, не превышает 1,15. Вот почему в местах появления различных дефектов, деформаций и неровностей на покрытии размеры последних очень быстро разрастаются, еще больше и опасно ухудшая общее состояние дороги по ровности.

Отсюда знакомая уже многим дорожным подрядчикам полезная заповедь – хочешь быть конкурентоспособным и привлекательным заказчику, строй и сдавай дороги одновременно прочными и ровными и на этой основе повышай гарантийные сроки своих объектов.

Фирма ВАД, видимо, одной из первых среди подрядчиков новой России не только поняла глубокий технологический, экономический и, быть может, даже философский смысл этой заповеди, но и стала реально воплощать ее на практике, доведя контрактные и фактические гарантийные сроки многих своих объектов до 7 лет, своеобразно догнав передовые дорожные Европу и Америку, где иногда тоже дают подобные сроки гарантий.

Этого удалось добиться, главным образом, за счет постоянной заботы о повышении качества и равномерности уплотнения земляного полотна, щебеночных оснований и асфальтобетонных покрытий, а также непрерывного поиска и применения наиболее совершенных и результативных технологических приемов и средств укладки этих материалов более ровными слоями.

Внедрение новой, а точнее, усовершенствованной технологии (собственная разработка ВАДа) укатки асфальтобетона комбинацией вибрационных и статических катков позволило не только поднять средний уровень получаемой плотности, но и добиться надежной и устойчивой ее реализации на всех без исключения объектах 2004 г. Теперь минимально требуемый по СНиП коэффициент уплотнения асфальтобетона (для щебенистого 0,99, или 99 %), как правило, не превышает 5–10 % в общем количестве тестовых кернов из покрытия, а остальные достигают значений 1,0–1,02 (100–102 %). Раньше все было наоборот.

Ровности устраиваемых покрытий ЗАО «ВАД» всегда уделяло особое внимание. Поэтому в арсенале используемых новинок в свое время появились скоростные автосамосвалы Volvo (Швеция), способные быстро и без существенных потерь тепла доставлять горячую асфальтобетонную смесь на расстояние до 150 км; специальные перегрузчики Shuttle Buggy фирмы Roadtec (США), бесконтактно подающие смесь из автосамосвала в бункер асфальтоукладчика с одновременным устранением ее гранулометрической и температурной сегрегации; длинномерные (18–24 м) двойные лыжи по типу французской и др.

Если прежде уровень значений показателя ровности покрытия в пределах 20–30 см/км по толчкомеру ТХК-2 (УАЗ) считался очень хорошим, то сегодня такой результат воспринимается уже как обычный или даже недостаточный, потому что на ряде объектов он улучшен до уровня 10–20 см/км. И не только по толчкомеру ТХК-2 (УАЗ).

Ученые государственного технического университета (МАДИ) провели специальные и обстоятельные исследования «вадовской» ровности по различным критериям, как регламентированным ГОСТ 30412-96 «Дороги автомобильные и аэродромы. Методы измерения неровностей оснований и покрытий» и СНиП 3.06.03–85 «Автомобильные дороги» (просветы под 3-метровой рейкой и разность вертикальных отметок при шаге замера 5 м, 10 м и 20 м или попросту шаговая ровность), так и дополнительным, в том числе по международному индексу ровности IRI (International Raughness Index). Согласно международными нормам ровность оценивается следующим образом:

IRI < 1,0 – отличное 1,0 ≤ IRI ≤ 1,5 – очень хорошее 1,5 ≤ IRI ≤ 2,5 – хорошее 2,5 ≤ IRI ≤ 3,5 – среднее 3,5 ≤ IRI ≤ 4,5 – удовлетворительное IRI > 4,5 – плохое

Каждая из зарубежных стран устанавливает свои национальные требования по допустимым (предельным) значениям неровностей нового покрытия по методу IRI. К примеру, в соседней Финляндии верхние слои разных категорий дорог не должны иметь неровностей больше 1,4–1,6 мм/м (IRI ≤ 1,4 ≤ 1,6), а нижние слои – больше 1,7–1,9 мм/м (IRI ≤ 1,7 ≤ 1,9). При больших значениях IRI покрытия в эксплуатацию могут не приниматься.
Дорожная лаборатория МАДИ с двумя ДПП в рабочем положении.
Рис. 2. Дорожная лаборатория МАДИ с двумя ДПП в рабочем положении.

Для тестирования микропрофилей поверхности автомобильной дороги использовалась передвижная лаборатория конструкции МАДИ (рис. 2), главным измерительным инструментом которой является запатентованный динамический преобразователь профиля (ДПП) с соответствующими блоками питания, регистрации, памяти и электронной обработки информации. Два типа похожих лабораторий с аналогичным принципом устройства и измерения неровностей действуют во Франции.

Объектом метрологического контроля и исследований МАДИ был участок км 110 – км 150 федеральной автомобильной дороги «Кола» Санкт-Петербург – Петрозаводск – Мурманск, причем участок км 110 – км 132 был полностью сдан в эксплуатацию после капитального ремонта в 2003 г,, а участок км 132 – км 150 на момент исследования (май 2004 г.) находился в работе, и на нем были уложены выравнивающий и нижний слои покрытия.

Результаты исследования показали, что по российскому нормативному значению просветов под 3-метровой рейкой на участке км 110 – км 132 с уложенным верхним слоем дорога полностью отвечает требованиям СНиП с вероятностью непревышения просветов 3 и 6 мм соответственно 99,4 и 100 %.

По нормативным значениям разности вертикальных отметок при шаге замера 5 м, 10 м и 20 м требования СНиП тоже полностью выполнены, причем вероятность непревышения этих нормативных значений составила в среднем 99,7 % (шаг замера 5 м), 98 % (шаг 10 м) и 98,3 % (шаг 20 м).

Оценка ровности покрытия на этом же сданном участке дороги (км 110 – км 132) по международному показателю IRI оказалась отличной, так как 0,52 ≤ IRI ≤ 0,88, или в среднем 0,72 мм/м.

Полученная статистика просветов под 3-метровой рейкой на поверхности уже нижнего слоя покрытия (км 132 – км 150) показала, что на всем протяжении обследования нормы СНиП тоже полностью выполнены, т.е. просветы ≤ 3 мм. При этом вероятность непревышения нормативного просвета 3 мм превосходит требуемое значение, равное 98 %. Поэтому состояние поверхности нижнего слоя по ровности специалисты МАДИ оценили на «отлично». Очевидно в этом, т.е. в тщательной подготовке нижележащей поверхности, и кроется секрет высокой ровности последующего верхнего слоя покрытия.

Categories: Без рубрики
8 Июн 2011

«Мы строим дороги в будущее» – девиз ОАО «Дорожно-строительная компания «Автобан», объединяющего предприятия Западной Сибири и Европейской части России. За годы своей деятельности ими возведено более 300 млн кубометров земляного полотна и построено свыше 2500 км дорог с твердым покрытием. Более 2300 человек, работающих сегодня в компании, в последнее десятилетие участвовали и участвуют в строительстве и реконструкции современных автомобильных дорог Сургут – Нижневартовск, Сургут – Ханты-Мансийск, Тюмень – Ханты-Мансийск, Ханты-Мансийск – Нягань, М-4 «Дон» Москва – Ростов-на-Дону, Киев – Одесса.

ЗАО «ВАД» КОСТЕЛЬОВ М. П., к. т. н., главный технолог

ЗАО «ВАД» (Высококачественные Автомобильные Дороги, Санкт-Петербург) –одна из крупнейших российских дорожно-строительных компаний, выполнившая за последние восемь лет устройство асфальтобетонных покрытий на площади более 11 млн кв. м. На ее долю приходится не менее половины работ по асфальтированию и реконструкции улиц в Санкт-Петербурге. Среди объектов ЗАО «ВАД» – Невский проспект (в 1998 г. реконструкция участка от площади Восстания до Дворцового моста была осуществлена всего за 9 дней); пр. Мориса Тореза, участки КАД; федеральные автомобильные трассы – М-18 «Кола» Санкт-Петербург – Петрозаводск – Мурманск, М-10 «Скандинавия» Санкт-Петербург – Выборг – госграница, А-114 Вологда – Новая Ладога и многие километры дорог в Вологодской области и Республике Карелия. В 2004 году ЗАО «ВАД» уложило асфальтобетон в покрытие на 212 километрах дорог при средней ширине 8 м.

ОАО «Дорожный сервис РТ», Республика Татарстан ФАСХУТДИНОВ И. И., заместитель генерального директора

ОАО «Дорожный сервис РТ» основано в 1996 году. Компания специализируется на капитальном ремонте автомобильных дорог и нанесении дорожной разметки.

ЗАО «ИЛАН» ЧЕРЕПАНОВ С. М., главный инженер

Компания «Илан» создана в 1991 г. В ее активе строительство трассы М-53 «Байкал» на участке Новосибирск – Иркутск, работа в Красноярском крае ( в т. ч. Норильском промышленном районе), на трассе Чита – Хабаровск, реконструкция трассы М1 «Беларусь». Парк дорожной техники компании укомплектован современным оборудованием от ведущих мировых производителей. Использование экскаваторов Hyundai и Komatsu, асфальтовозов Volvo, АБЗ Marini и Ermont, катков Bomag и Vibromax, дробильно-сортировочного оборудования Sandvik, помноженные на опыт высококвалифицированных специалистов гарантируют высокое качество работ. В течение нескольких недель компания готова развернуть масштабное дорожное строительство в любом районе России и Ближнего зарубежья.

ООО «Интердорстрой» ГИНЕРГАРДТ В. Э., первый заместитель генерального директора

ООО «Интердорстрой» (Москва) – динамично развивающаяся российская дорожно-строительная компания, с 1998 года осуществляющая строительство, реконструкцию и ремонт федеральных дорог и сооружений на них. Ее подразделения укомплектованы высококвалифицированными кадрами, имеющими многолетний опыт работы. Сегодня ООО «Интердорстрой» ведет строительство автодороги М-2 «Крым» Москва – Белгород, реконструкцию магистрали М-4 «Дон», капитальный ремонт автодороги М-9 «Балтия» Москва – Рига и М-10 «Россия» Москва – Санкт-Петербург. За период работы ООО «Интердорстрой» выполнено работ на общую сумму более 4 млрд рублей.

ЗАО «Труд», Филиппов В.Н. начальник планово-производственного департамента

Закрытое акционерное общество «Труд», основанное в 1988 году, за время своего существования выдвинулось в число крупнейших подрядчиков на российском рынке дорожных работ. ЗАО «Труд» осуществляет комплексное строительство и реконструкцию автомобильных дорог с асфальтобетонным покрытием, аэродромных покрытий, путепроводов, мостов, выполняет работы по промышленному и гражданскому строительству, производит строительные материалы.

Начав свою деятельность в Сибири и на Дальнем Востоке, ЗАО «Труд» с 1997 года активно завоевывает позиции ведущего подрядчика на важнейших автомобильных дорогах в Европейской части России.

Вся деятельность филиалов ЗАО «Труд», расположенных в Европейской части России, развивается в области капитального ремонта и реконструкции федеральных автомобильных дорог, и в первую очередь таких автомагистралей, как Москва – Минск и Москва – Харьков.

Современная техника и высококвалифицированный персонал позволили освоить самые передовые технологии дорожного строительства.

Разработана, внедрена и успешно развивается система менеджмента качества в области строительства, реконструкции и ремонта автомобильных дорог всех технических категорий, разработки и освоения новых технологий и видов асфальтобетонных покрытий, соответствующая международному стандарту ISO 9001: 2000.

Categories: Без рубрики
8 Июн 2011

Несмотря на бурное развитие технического прогресса, подземный способ добычи угля и сегодня остается чрезвычайно сложным и трудоемким. В настоящее время его основной объем обеспечивается комбайновыми и струговыми комплексами оборудования с механизированными крепями. Первый успешный опыт промышленного применения очистных механизированных комплексов (ОМК) относится к началу семидесятых годов XX века, и до настоящего времени этот вид горной техники продолжает динамично развиваться.

Создание и внедрение ОМК в практику подземной добычи угля сыграло исключительную роль в техническом перевооружении угольной промышленности, послужило мощным стимулом развития шахт, привело к повышению технического уровня всех звеньев технологии подземной добычи. Успешное применение ОМК в угольной промышленности способствовало расширению области их применения. Очистные механизированные комплексы стали использоваться на калийных рудниках и при добыче целого ряда других полезных ископаемых преимущественно с пластовой структурой залегания.

При переходе на комплексную механизацию очистных работ в принципе были решены проблемы создания гидрофицированных передвижных секций крепи, забойных передвижных скребковых конвейеров, узкозахватных комбайнов, стругов. Кинематические связи перечисленных механизмов и оборудования обеспечивают согласованное перемещение в циклическом режиме всего комплекса машин и оборудования вслед за подвиганием очистного забоя по мере отработки выемочного столба.

По типу применяемой выемочной машины различают комплексы комбайновые и струговые, а при использовании в качестве выемочной и транспортирующей машины конвейеростругов комплекс оборудования принято называть выемочным агрегатом.

Струговые ОМК имеют преимущество перед комбайновыми комплексами при отработке тонких пластов без прослоев породы и консолидированных твердых включений. Комбайновые комплексы применяются для механизации очистных работ при добыче угля из пластов средней мощности и мощных, а также из тонких пластов со сложной структурой и гипсометрией залегания, где использование стругов нецелесообразно.

Конвейероструговые щитовые агрегаты получили преимущественное распространение при отработке пластов с углом наклона более 35° по падению лавами, нарезанными по простиранию. Агрегаты с оградительно-поддерживающими крепями используются для добычи угля из пологих и наклонных пластов.

Очистной механизированный комплекс состоит из основного (выемочная машина, комплект секций гидрофицированной передвижной забойной крепи, забойный передвижной конвейер) и вспомогательного оборудования (кабелеукладчик, фронтальный лемех, направляющие балки, секции крепи сопряжений лавы с пластовыми выработками, перегружатель, дробилка, комплект насосных станций, пусковая и защитная аппаратура). Некоторые из перечисленных вспомогательных механизмов и оборудования могут отсутствовать или замещаться другими механизмами.

Согласованное функционирование всех механизмов и оборудования ОМК в основных и вспомогательных режимах обеспечивается интегрированными системами электроснабжения, освещения, сигнализации и управления, гидросистемой, обеспечивающей силовые перемещения секций крепи и конвейера с выемочной машиной, гидросистемой пылеподавления, системами контроля состояния воздуха в выработках, в частности количественного содержания газа метана, телефонной и громкоговорящей связи. Основным требованием к перечисленным оборудованию и системам является обеспечение длительной устойчивой высокопроизводительной и безопасной для людей работы ОМК в изменяющихся горно-геологических условиях по мере отработки выемочного столба. Использование резервирования как метода повышения надежности в очистных механизированных комплексах ограничено, поэтому каждый из элементов, входящих в ОМК, должен быть высоконадежным и взрыво-, искробезопасным. При разработке, изготовлении и эксплуатации ОМК исполнители должны руководствоваться действующими правилами безопасности в угольных шахтах (сланцевых шахтах, рудниках), нормативами по безопасности забойных машин и комплексов и рядом других отраслевых нормативных документов, методик и указаний.

Categories: Без рубрики
8 Июн 2011

Являющаяся одной из древнейших отраслей народного хозяйства угольная промышленность и впредь будет оставаться в числе главнейших поставщиков первичного сырья и энергетических ресурсов. От всех других, связанных с добычей топлива отраслей ее отличают разнообразие и сложность условий (увеличивающиеся глубины, проявления горного давления, газодинамические явления, особый микроклимат и др.), предопределяющие большое число способов и систем разработки угольных месторождений, использование широкого спектра технологических процессов и оборудования.

Постоянное совершенствование техники (прежде всего, в части безопасности и надежности) и технологии добычи угля – необходимое условие успешного развития угольной отрасли.

Угольная промышленность в развитых угледобывающих странах

В последние десятилетия в угольной промышленности ведущих угледобывающих стран мира усиливаются процессы концентрации производства, растет производительность труда, повышается качество, мощность и надежность оборудования, во все большей степени удается обеспечивать бесперебойность производственных процессов, улучшать условия труда и технику безопасности (последнее особенно актуально на фоне постоянного увеличения глубин разработки месторождений). Продолжается техническое перевооружение угольных предприятий, совершенствование существующей и внедрение новой высокопроизводительной техники. От заменяемых аналогов ее отличают возросшая энерговооруженность; наличие автоматизированных систем управления на современной элементной базе с использованием микропроцессорной техники, включая эффективные средства диагностики; применение прогрессивных конструкционных материалов. Наибольшее внимание машиностроители уделяют повышению производительности и надежности машин.

Анализ стратегических мер, которые предпринимались при выведении из кризисного состояния угольных отраслей Великобритании, Германии и Польши, свидетельствует, что в основу процесса концентрации работ и интенсификации подземного производства был положен принцип эффективного использования современной техники и технологии. При этом технология постоянно ориентировалась на полное использование потенциала техники современного уровня, а техника, в свою очередь, совершенствовалась с учетом максимальной адаптации под горно-геологические и горно-технические условия шахт.

Угольные отрасли России и Украины

В 2003 году в России было добыто 275,6 миллиона тонн угля. Добыча открытым способом составила 181,5 миллиона тонн (или 65,8%). По производству угля Россия занимает пятое место в мире после Китая, США, Индии и Австралии. Энергетической стратегией России намечается увеличить добычу угля в 2005 г. до 280 млн т, в 2010 г. – до 340 млн т и в 2020 г. – до 450 млн т. В угольной промышленности России практически завершилась структурная перестройка, и к управлению угледобывающими компаниями пришли частные владельцы. Нагрузка на очистной забой составила на начало 2004 года более 1300 т/сутки.

Состояние дел в угольной промышленности Украины в настоящее время остается неудовлетворительным, несмотря на то, что за последние годы удалось стабилизировать ежегодную добычу угля на уровне 80 миллионов тонн. Кризисное состояние угольной отрасли Украины обусловлено двумя основными факторами: сложными горно-геологическими условиями отработки запасов угля и вызванным хроническим недовыделением средств на капитальное строительство и модернизацию производства старением шахтного фонда. Продолжается процесс реструктуризации, но большинство угольных предприятий пока остаются государственными. Нагрузка на очистной забой в Украине составляет 800 т/сутки.

Несмотря на имеющиеся существенные различия, дальнейшее успешное развитие угольной промышленности как в России, так и в Украине возможны только при условии концентрации горных работ и интенсификации подземного производства на базе эффективного использования современных техники и технологии.

Горно-шахтное оборудование современного технического уровня для очистных работ

Интенсификация производственной деятельности и развитие шахт не могут осуществляться на базе устаревшей техники.

Наиболее слабыми звеньями в современных очистных комплексах, прежде всего по параметрам надежности и ресурса, в настоящее время являются забойные скребковые конвейеры и очистные комбайны. Удельный вес простоев из-за их отказов составляет 70–80% от простоев всего размещенного в лаве и примыкающих выработках оборудования.

Особенно тяжелое положение сложилось за последние 5–10 лет с очистными комбайнами. При отработке одного выемочного столба зачастую приходится производить полную замену комбайна на новый через 300–500 тыс. т добытого угля, замену шнеков – практически через 120–200 тыс. т, поворотных редукторов – через 100–250 тыс. т, зубчатых колес и подшипниковых узлов в редукторах – через 100–200 тыс. т, гидронасосов и гидромоторов в подающих частях – через 60–100 тыс. т, рамных и корпусных узлов и деталей – через 200–300 тыс. т. Практически при отработке одного выемочного столба с учетом замены всех вышедших из строя узлов и деталей, за исключением основных корпусов, происходит замена одного-двух комбайнов. Существенная часть этих отказов не может быть устранена только в ремонтные смены и, как правило, занимает 1–2 добычные смены, порой приводя к суточным простоям высоконагруженных лав.

Основными причинами низкой эффективности эксплуатации широко применяемого до настоящего времени устаревшего горно-шахтного оборудования являются:

недостаточный расчетный ресурс и, как следствие, низкая в сравнении с машинами современного уровня надежность (2,5–5 тыс. часов против 15–40 тыс. часов);
низкая энерговооруженность очистных комбайнов (160–200 кВт против 360–600 кВт у современных комбайнов);
как показывает проведенный в 2003 году анализ горно-геологических условий всех КМЗ Украины, уже в 70 процентах лав крепи устаревших комплексов не соответствуют области применения по вмещающим боковым породам, что является основным сдерживающим фактором стабильной и безотказной работы очистных забоев;
недопустимо высокая, превышающая нормы более чем в 3 раза, трудоемкость технического обслуживания устаревшего оборудования;
отсутствие на большинстве шахт квалифицированных кадров для его обслуживания и ремонта.

Как в России, так и в Украине поднять угледобычу на новый уровень можно только одним путем – техническим перевооружением отрасли. Новое оборудование должно стабильно работать в сложных горно-геологических условиях шахт, а его ресурс, надежность и производительность – в 2–3 раза превышать аналогичные показатели существующего. Интенсификация производства при концентрации горных работ возможна только в случае комплексной механизации всех (включая вспомогательные) технологических процессов, максимальном сокращении ручного труда, обязательном обеспечении безопасных и соответствующих санитарным нормам условий работы обслуживающего персонала. Именно таким принципиальным подходом руководствуются при создании горно-шахтного оборудования для комплексной механизации шахт в промышленно развитых странах.

За последние четыре года украинскими машиностроительными заводами освоено производство всех базовых видов очистного, проходческого и транспортного оборудования, отвечающего современным требованиям по производительности, безопасности, эргономике и надежности (расчетный ресурс новых моделей составляет 15–40 тыс. часов, т. е. как минимум в 3 раза выше, чем у заменяемых аналогов). За счет концентрации научного, конструкторского и производственного потенциала Донецкой, Луганской, Днепропетровской, Харьковской областей и г. Киева удалось в кратчайшие сроки освоить выпуск следующего оборудования:

нового поколения двухстоечных щитовых крепей ДМ, КДД, ДТ и ДТМ со сроком службы до капитального ремонта не менее 8 лет и повышенным до 1200 кН/м2 удельным сопротивлением. Такие крепи пригодны практически для всех возможных к промышленной отработке пологих и наклонных шахтных пластов Украины в диапазоне свыше 0,85 м;
типажного ряда двухскоростных скребковых забойных конвейеров типа КСД с энерговооруженностью приводных блоков 160, 200 и 350 кВт, способных при ресурсе по горной массе 3 млн т обеспечить стабильную работу высоконагруженных лав длиной 250–350 метров и производительностью 10 тысяч тонн в сутки;
высокопроизводительных очистных комбайнов УКД300, КДК500 и КДК700 с принципиально новыми электрическими бесцепными системами подачи на базе частотно-регулируемого привода для диапазона пластов от 0,85 до 4,20 м и производительностью 10–24 т/мин;
высокоэнерговооруженных проходческих комбайнов легкого и среднего классов КПД и КПУ для пород крепостью до 120 МПа, оснащенных средствами пылеулавливания и высоконапорного орошения, устройствами для возведения анкерного и арочного крепления;
типажного ряда ленточных конвейеров Л800Д, Л1000Д и Л1200Д с повышенной приспосабливаемостью к грузопотокам, оснащенных пожаробезопасными станциями, системами управления, защиты, контроля и диагностики на базе микропроцессорной техники.

Конструктивные решения, технические характеристики и параметры нового поколения очистной, проходческой и транспортной техники максимально соответствуют ее комплексному применению в условиях шахт.

Современные механизированные крепи КД90, КД90Т, КДД, ДМ, поставляемые ТПК «Укруглемаш» (изготовитель Дружковский машиностроительный завод), имеют расширенную область применения – практически все пологие и наклонные (в том числе со сложным горно-геологическим залеганием) шахтопласты Украины, мощностью от 0,8 до 2,6 м. Их конструкция максимально адаптированная к условиям украинских шахт, является конкурентоспособной и на мировом рынке. Повышение в 2,5–3 раза ресурса и надежности новых крепей и снижение в три раза по сравнению с традиционно применяемыми трудоемкости технического обслуживания позволили обеспечить в высоконагруженных лавах коэффициент машинного времени очистного комбайна 0,40–0,45 и довести стабильные нагрузки на забой до 2000–3000 т/сутки при максимальных – 5000–7800 т/сутки.

Столь высокие результаты были обеспечены благодаря целому ряду оригинальных конструктивных и технологических решений и использованию новых материалов.

Перспективные шахты Украины с 2000 года оснащаются высокопроизводительными комплексами МКД90, МКД90Т, МКДД, МДМ, МДТ на базе новых крепей для отработки пластов мощностью 0,85–2,60 м. В условиях практически полного отсутствия средств на капитальное строительство это наиболее радикальный способ повышения эффективности работы шахт. Так, эксплуатация пяти таких комплексов с соответствующей проходческой техникой и транспортными средствами дает годовой прирост добычи угля 1,2 млн т, что равносильно строительству новой шахты стоимостью не менее 1,5 млрд гривен (примерно 7,5 млрд рублей). Только ежегодный ввод в эксплуатацию 15–20 комплексов современного типа, несмотря на сокращение количества действующих лав и забоев, позволит наращивать объем добычи угля на 4–5 млн т ежегодно.

Положительные результаты внедрения нового оборудования особенно ярко проявляются на передовых шахтах, где оснащение забоев очистными комплексами, проходческим оборудованием и транспортными средствами современного уровня позволило обеспечить стабильную добычу из одной лавы до 3–5 тыс. тонн угля в сутки. Именно благодаря внедрению таких комплексов шахты им. А.Ф.Засядько и «Красноармейская-Западная №1» стали добывать по 4 млн т угля ежегодно, шахта «Краснолиманская» – 3 млн тонн и еще 20 шахт преодолели миллионный рубеж.

Categories: Без рубрики
8 Июн 2011

Завершив первый этап структурных преобразований, горная промышленность РФ в настоящее время формирует свои финансовые ресурсы в основном за счет реализации продукции. После длительного периода резкого снижения объемов производства в ходе реструктуризации в последние годы наметилась тенденция роста добычи полезных ископаемых и технико-экономических показателей горной отрасли. Правительством страны принята «Энергетическая стратегия России на период до 2020 г.», где планируется увеличение добычи угля до 410–450 млн тонн и рост его доли в производстве электроэнергии с 34 до 44%.

Для выполнения этой стратегической задачи в указанный период потребуется обеспечить двукратный прирост производственных мощностей предприятий отрасли как за счет модернизации действующих, так и строительства новых предприятий по добыче угля и других полезных ископаемых. Рост мощностей в период до 2010 г. будет происходить за счет технического перевооружения, а в период 2011–2020 гг. – за счет коренного изменения технического уровня горного производства.

Концентрация горного производства на перспективных шахтах угольной отрасли за счет технического переоснащения очистных комплексов требует значительных изменений в ведении подготовительных работ. И в первую очередь это касается прогрессивного комбайнового способа. Уровень комбайновой проходки по ведущим угольным компаниям (УК «Кузбассуголь», УК«Кузнецкуголь») колеблется от 72 до 98 % на конец 2003 г.

Парк проходческих комбайнов в угольной отрасли составляет около 360 штук (порядка 240 из них находятся в Кузбассе). Основой этого парка являются комбайны типа ГПКС производства Копейского машиностроительного завода (по Кузбассу, например, 97%). Анализ состояния проходческих комбайнов указывает на неуклонное снижение парка новых машин. Износ комбайнов по основным угольным компаниям является настораживающим фактором в возможностях обеспечения необходимого объема подготовительных работ в угольных компаниях.

Сейчас в России, вместо ранее выпускавшихся заводами СССР для нужд угольной промышленности, других горно-добывающих отраслей и подземного строительства шести моделей комбайнов весом от 12 до 80 т, на потоке единственный массовый комбайн 1ГПКС (масса 24 т) (рис. 1) и ставится на промышленное производство базовая модель комбайна среднего класса КП-25 (масса 52 т) (рис. 2) и комбайн КП-21.

В то же время подготовленные к производству четыре типа новых современных комбайнов – КП-15 (масса 15 т), КП-20Б (масса 28 т), КП-25Н для проходки уклонов и модели с оборудованием для механизации анкерования – КП-25А (масса 58 т), а также проходческо-добычной комбайн ПДКА по типу комбайна фирмы «Джой» (масса 65 т) – не освоены производством из-за отсутствия господдержки по финансированию. Машиностроительный завод по выпуску комбайнов среднего класса (масса 40 т) и тяжелых проходческих комбайнов типа 4ПП-2М и 4ПП-5 (масса 45–80 т) остался на Украине, где было организовано производство новых проходческих комбайнов

П-110, П-220, КСП-32. Отсутствие отечественных проходческих комбайнов во всем диапазоне мощности и массы (от 8–10 до 80–100 т.) было восполнено импортом комбайнов западных зарубежных фирм и производства машиностроительных заводов Украины.

Однако в период с 1990 по 2004 г. ни один из импортных комбайнов не окупился в эксплуатации. Темпы их работы не превышают темпы проходки отечественными комбайнами, стоимость производства которых значительно ниже стоимости комбайнов зарубежных.
Комбайн проходческий 1ГПКС
Рис. 1. Комбайн проходческий 1ГПКС

Для возрождения производства отечественных проходческих комбайнов необходимо практически заново восстановить систему организации научных и конструкторских работ по созданию проходческой техники с учетом огромного отечественного и зарубежного опыта в этом направлении, сосредоточить изготовление новых машин на предприятиях с высокоэффективной технологией, углубить подготовку инженерных и научных кадров с учетом требований рыночной экономики.

Представляется целесообразным сосредоточить деятельность по созданию проходческих комплексов на базе отечественных комбайнов, прежде всего циклического (избирательного) действия, обеспечивающих повышение темпов проходки в 3–4 раза при доведении коэффициента надежности конструкции до 0,9 и соблюдении требований безопасности горных работ.

Кроме того, необходимо сосредоточить научные исследования на создании исполнительных органов проходческих комбайнов для разрушения крепких пород, для чего использовать последние достижения в области гидроструйной технологии, вибрационной техники и других физических процессов.
Комбайн проходческий КП25
Рис. 2. Комбайн проходческий КП25

Для успешной реализации поставленных задач по созданию новой техники в условиях рыночной экономики необходимы новые подходы к организации работ, заключающиеся в организации гибких специализированных объединений. Одним из первых полностью оправдавшим возлагавшиеся на него надежды примером плодотворного взаимодействия науки и производства стал созданный еще в начале 80-х гг. учебно-научно-производственный комплекс «Тульский государственный университет (ТулГУ) – ЦНИИподземмаш – Скуратовский экспериментальный завод», задачей которого была концентрация усилий ведущих специалистов на решении актуальных задач по созданию проходческой техники, подготовка инженерных и научных кадров. В период функционирования комплекса были разработаны САПР стреловидных и планетарных исполнительных органов проходческих комбайнов, организованы оригинальная лабораторно-экспериментальная база по резанию крепких пород, аспирантура и профильные группы студентов, специализирующихся в научных и производственных подразделениях комплекса.

В этот период посредством САПР были обоснованы рациональные параметры унифицированных поперечно-осевых барабанов и продольно-осевых коронок, которые затем испытывались на шахтах Кузбасса, Воркуты и использовались в комбайнах 1ГПКС, КП-20Б, КП-25 (табл. 1). Кроме того, выполнены работы по созданию универсальных исполнительных органов стреловидного типа для проведения выработок по углю и смешанному забою применительно к комбайнам ПК-9, ЧПП-2М, а также разработана и испытана в шахтных условиях оригинальная конструкция режущей коронки с встроенным вибрационным устройством.

Categories: Без рубрики
8 Июн 2011

Среди проблем, стоящих перед угольной промышленностью Украины и напрямую влияющих на динамику добычи угля, наиболее острой остается ускорение темпов проведения подготовительных выработок. Без ее решения невозможно обеспечить своевременную подготовку фронта очистных работ. Эта же проблема не менее актуальна и для других угледобывающих стран СНГ.

За последние три года в Украине показатели объемов проведения всех выработок не только стабилизировались (на уровне 685–695 км в год, в том числе вскрывающие и подготавливающие – 535–545 километров), но даже наметился их некоторый рост. Хотя, по сравнению с 1995 годом, годовой объем проведения всех выработок сократился в 1,45 раза, а вскрывающих и подготавливающих – в 1,38 раза. В то же время объемы проведения выработок проходческими комбайнами выросли с 231 км в 1998 г. до 256 км в

2003 г. Начиная с середины 90-х годов уровень проведения выработок проходческими комбайнами постоянно повышался, увеличившись с 31,1% в 1995 году до 45,5% в 2003 году. Положительная тенденция увеличения объемов проведения выработок проходческими комбайнами должна сохраниться, составив к 2005 году 340–350 км (53–55% от общего объема).

Сохранится и наметившийся с 1997 года стабильный рост средних скоростей проведения выработок всеми типами комбайнов (к 2005 году достигнув 105–110 м/месяц). Будет продолжаться процесс вытеснения комбайнов легкого типа (1ГПКС, КСП21, КСП22) комбайнами среднего и тяжелого типов (П110, П220, КСП32, КСП42, КПД, КПУ), удельный вес которых в общем парке проходческих комбайнов к 2005 году достигнет 65–70%.

Необходимо отметить, что за последние 6 лет в Украине наметились определенные сдвиги в области создания проходческих комбайнов. Парк действующих машин пополнился новыми моделями: П110 и П220 производства ЗАО «Новокраматорский машиностроительный завод» и КСП21, КСП22, КСП32, КСП42 (модернизированные варианты проходческих комбайнов 1ГПКС, 4ПП2М, 4ПП5) производства ОАО «Ясиноватский машиностроительный завод». Однако технический уровень новых и, тем более, модернизированных комбайнов существенно отстает от современных требований, особенно в части таких показателей, как гарантийный ресурс разрушенной породы, расчетный ресурс основных узлов (так у комбайнов ЗАО «Новокраматорский машзавод» эти показатели – 18 тыс. м3 и 10000 часов, у комбайнов ОАО «Ясиноватский машиностроительный завод» – 16 тыс. м3 и 5000 часов, а необходимо как минимум 24–26 тыс. м3 и 20000 часов, соответственно), эксплуатационная надежность, ремонтопригодность, расширение функциональных возможностей, обеспечение требований безопасности и промышленной санитарии (прежде всего по фактору запыленности), возможность комплексного решения всех вопросов проходческого цикла.

Первый шаг в создании «Донгипроуглемашем» новых проходческих комбайнов П110 и П220 подтвердил правильность стратегического направления по созданию в Украине проходческой техники, соответствующей мировому уровню, позволяющей резко увеличить темпы проведения выработок. Проходческие комбайны П110 и П220, доля которых в 2000 году в общем парке составляла всего лишь 8,6%, обеспечивали в течение 5 лет средние скорости проведения выработок в 1,6–1,8 раза выше, чем в среднем по отрасли, чем во многом определили наметившийся с 1997 года общий рост скорости проведения выработок всеми типами комбайнов.

Для выполнения прогнозируемых в 2005 году на уровне 340–350 км объемов проведения выработок комбайнами, при сокращении их общего парка до 420–430 единиц, средние скорости проведения выработок комбайнами должны возрасти до 110 м/мес.

Для решения поставленных задач «Донгипроуглемаш» считает необходимым в кратчайшие сроки насытить рынок конкурентоспособными не только на внутреннем, но и на мировом рынке моделями проходческих комбайнов и комплексов на их основе; т. е. оборудованием, с помощью которого удалось бы обеспечить существенное повышение безопасности и улучшение условий труда проходчиков, резкое сокращение сроков и повышение качества подготовки фронта очистных работ, ускорение строительства новых горизонтов и шахт.

Categories: Без рубрики
8 Июн 2011

Процессы дробления и измельчения находят широкое применение в различных отраслях промышленности. По некоторым оценкам, на эти процессы приходится до 10% мировых энергетических затрат. Спектр технологических задач, решаемых в результате дробления и измельчения различных материалов, чрезвычайно широк. В связи с этим поиск новых решений для совершенствования оборудования и технологий в области уменьшения крупности происходит непрерывно по нескольким направлениям.

Целью настоящего обзора не является сравнение различных типов оборудования и, тем более, сопоставление однотипного оборудования различных производителей. Освещены некоторые направления в развитии дробильного и размольного оборудования, а также примеры использования новых агрегатов.

Щековые дробилки

В развитии щековых дробилок можно отметить появление на рынке крупных дробилок со сложным качанием щеки. Если ранее считалось, что дробилки данного типа можно использовать для дробления материала крупностью до 500 мм при невысокой производительности, то в настоящий момент конструктивные усовершенствования, использование новых сплавов, повышение качества отливки и механической обработки позволили снять эти ограничения.

Максимальный типоразмер дробилок со сложным качанием щеки, выпускаемых отечественной промышленностью, – это ЩДС 8х10. Дробилки с размером загрузочного отверстия до 1500х2000мм и производительностью до 550 м3/ч на российском рынке предлагают зарубежные производители – Metso Minerals, Telsmith, Sandvik, ThyssenKrupp, FFE Minerals.

К преимуществам дробилок со сложным качанием щеки можно отнести меньшую занимаемую площадь, меньшую трудоемкость монтажа и, соответственно, возможность использования в составе мобильных установок и на подземных рудниках.

Конусные дробилки крупного дробления

Здесь следует отметить официальное появление в типоразмерном ряду ОАО «Объединенные машиностроительные заводы» дробилки ККД 1350/160, которая закрывает пустовавшую нишу между ККД 1200/150 и ККД 1500/180. Зарубежные фирмы-производители давно ввели дробилки такого типоразмера в свою номенклатуру.

Кроме ОАО «ОМЗ» конусные дробилки крупного дробления на российском рынке предлагают компании Metso Minerals (серия Superior MKII), немецкая ThyssenKrupp и американская FFE Minerals, однако введенных в эксплуатацию дробилок этих фирм больших типоразмеров в России пока нет.

Конусные дробилки среднего и мелкого дробления

Общеизвестно, что используемый большинством конусных дробилок принцип разрушения сжатием является наименее выгодным с точки зрения энергетических затрат. Однако это утверждение абсолютно верно только для случая зажатия единичного куска дробимого материала между металлическими рабочими органами дробильного аппарата. Поэтому основным направлением повышения эффективности работы конусных дробилок в последнее время считается обеспечение максимального заполнения рабочего пространства дробимым материалом. При такой плотной упаковке происходит дробление кусков другими кусками, что повышает эффективность использования энергии, увеличивает производительность дробилки, снижает расход футеровки, а также позволяет получать дробленый материал более правильной, кубовидной формы, что особенно важно при производстве строительного щебня.
Передвижной комплекс, состоящий из дробильной установки Nordberg LT1415 с роторной дробилкой NP1415 и сортировочного модуля Nordberg ST620
Передвижной комплекс, состоящий из дробильной установки Nordberg LT1415 с роторной дробилкой NP1415 и сортировочного модуля Nordberg ST620

Практически все производители, в том числе и российские, применяют систему гибкого индивидуального подхода к каждому потребителю, предлагая до 5–6 профилей футеровок на каждый типоразмер дробилок, возможность изготовления с различным эксцентриситетом вала, высокую степень автоматизации, гидравлическую систему защиты от попадания недробимых предметов, механизированную систему регулирования разгрузочной щели, большой выбор приспособлений для обслуживания и ремонта.

В России конусные дробилки малых типоразмеров производит ОАО «Дробмаш», дробилки среднего и мелкого дробления с диаметром основания конуса 1750, 2200 и 3000 мм выпускает ОАО «ОМЗ». Следует сказать, что дробилки КСД-3000 и КМД-3000 являются в своем роде уникальными, т.к. такие типоразмеры в настоящий момент не выпускает больше ни одна компания. Выпускается большое количество модификаций, что позволяет подобрать дробилку практически для любого применения.

Отдельное место занимают отечественные конусные инерционные дробилки КИД, использующие для создания дробящего усилия центробежную силу эксцентрикового вибровозбудителя. В России установлены и работают, в основном на производстве стройматериалов, дробилки с диаметром основания конуса до 1200 мм.

Конусные дробилки среднего и мелкого дробления есть в номенклатуре каждой зарубежной фирмы-производителя. Так, Metso Minerals предлагает дробилки серии HP (пришедшей на смену дробилкам типа Symons) и MP, а также гирационные дробилки серии GP. Кроме того, компания остается единственным производителем дробилок мокрого дробления серии Waterflush. Фирма Sandvik предлагает на рынке дробилки Hydrocone серий

S и H, производство которых перешло к ней от Svedala в 2001 г. при образовании Metso. Недавно Sandvik официально представил новый типоразмер – Hydrocone H7800. Компания Telsmith продвигает дробилки Gyrasphere серий D и H, фирма ThyssenKrupp – дробилки серии Kubria.

Categories: Без рубрики
8 Июн 2011

Известно, что сжатие минеральной частицы между двумя рабочими органами (средами) приводит к измельчению только ее самой, тогда как сжатие частицы между другими приводит к измельчению всех находящихся в контакте частиц (при этом для достижения необходимой крупности продукта требуется менее половины энергии, расходуемой барабанными мельницами). Именно на этом принципе основан процесс измельчения в валках высокого давления. Два вращающихся в противоположных направлениях валка, между которыми сжимается материал, служат измельчающими органами. Требуемое для измельчения давление передается через подвижный (плавающий) валок.
Технология измельчения в валках высокого давления появилась в середине 80-х годов XX столетия. Приоритет ее создания принадлежит профессору Шонерту (Schonert, патент 1986 года). Реализующие этот способ измельчения мельницы носят различные названия: дробилки межчастичного измельчения, пресс-валки, роллер-прессы, Ecoplex, Polycom и т. д.

Отличие пресс-валков от валковых дробилок с гладкими валками заключается в конструктивном исполнении валков
(а точнее – их поверхностей), которые могут изготовляться в трех основных вариантах:

рифлеными;
с наварным (наплавленным) профилем (Hexadur);
оштифтованными (Durapin).

Наличие профилей, сводя к минимуму относительное скольжение материала по поверхности валка, уменьшает его износ. Возможны следующие конструктивные исполнения валков:

валки из прочных литых сегментов используются при низких рабочих давлениях измельчения и высокоабразивном исходном материале; имеют значительную (до 160 мм) толщину изнашиваемого слоя металла; срок службы в зависимости от абразивности материала – от 1500 до 15 тыс. часов; достаточно низкая стоимость;
кованые стальные валки с наварными или наплавленными слоями толщина изнашиваемого слоя – 10–12 мм, причем повторная наварка может производиться на валке, находящемся в машине; срок службы до 17 тыс. часов;
цельнолитые валки используются при высоких давлениях измельчения; толщина изнашиваемого слоя металла до 160 мм; срок службы – до 40 тыс. часов.

Основными узлами пресс-валков являются: валки (два) (рис.1), подшипники валков с корпусами, рама, гидравлическая система прижатия плавающего валка, приводы валков.
Валки пресс-валков
Рис. 1. Валки пресс-валков

В больших установках диаметр валков составляет 1,0–2,8 м; ширина – 0,8–1,6 м; окружная скорость – 1–2 м/с; удельный расход энергии – 1,5–5,0 кВт-ч/т. Установленная мощность двигателей может доходить до 4,5 тыс. кВт, а производительность самых крупных установок достигать 1800 т/ч.

Передающаяся посредством гидроцилиндров сила, действующая на находящийся в зазоре между валками слой материала, составляет порядка 50 кН на 1 см ширины валка (при диаметре валка 1 м). Так как измерить эффективное давление в слое материала, находящегося между валками, практически невозможно, для сравнения пользуются дополнительным критерием – удельной нагрузкой Fs (Н), отнесенной к ширине валка B (м) и его диаметру D (м) – Fs / (B D), Н/м2. (Эта величина ни в коей мере не равна наибольшему давлению Pmax в зазоре). Суммарное усилие, действующее на слой материала, в больших установках достигает 20 тыс. кН.

Механизм измельчения в валках высокого давления проиллюстрирован на рис.2. Валки диаметром D вращаются с окружной скоростью V. В зоне А частицы подаваемого на измельчение материала получают ускорение и транспортируются вниз за счет трения, достигая скорости, близкой или равной V. Если d – расстояние между валками в осевой плоскости, то уплотнение (сжатие) материала должно начаться в том месте, где выполняется пропорция:
Механизм измельчения в валках высокого давления
Рис. 2. Механизм измельчения в валках высокого давления
g / d = ρл /ρи,

где pл – плотность материала в выходящей из валков ленте продукта, ρи – плотность исходного материала при вступлении в рабочую зону.

Это равенство определяет верхнюю границу зоны сжатия Б. При выходе из рабочей зоны лента уплотненного материала немного расширяется в зоне В. Для гладких валков зона сжатия определяется углом, равным 5–70°.

Количество материала М, прошедшее через валки (т/ч), определяется из выражения:
M=V·В·δ·ρ·360

где V – м/с; В – ширина валка, м; δ – толщина ленты на выходе из валков (продукта), м; ρ – плотность материала в ленте, кг/м3.

Равенство верно, если скорость ленты равна окружной скорости валков. В зависимости от вида поверхности валков (грубая или профилированная) толщина ленты может значительно возрастать. Соответственно увеличится производительность.

Исследования показали, что радиальное давление ρr в зоне сжатия материала растет до уровня немного выше осевой линии валков, а затем падает к нижней границе зоны расширения В ленты продукта. Радиальное давление меняется по величине в зависимости от условий работы валков и может достигать 300 МПа. В случае попадания кусков, превышающих размерами рабочий зазор, местные пики давлений могут возникать и в более высоких зонах рабочего пространства. Удалось оценить и величину тангенциальных напряжений ρt, составивших 30–50 % от радиальных.

Можно было бы полагать, что за исключением некоторого краевого эффекта давление вдоль валка относительно большой ширины должно быть постоянным. Однако исследования показали, что даже на полупромышленном образце пресс-валков диаметром 1000 мм и шириной всего 320 мм краевой эффект распространяется до середины валка с обеих сторон.

Categories: Без рубрики
8 Июн 2011

Современное состояние освоения минеральных ресурсов Мирового океана
оборудование и технологии для подводной добычи полезных ископаемых

В настоящее время на освоение минеральных ресурсов Мирового океана направлены усилия подавляющего большинства промышленно развитых стран. Эти усилия тем интенсивнее, чем отчетливее понимание того, что запасы полезных ископаемых суши в значительной степени истощены и назрела необходимость вовлечения в сферу общественного производства ресурсов океанского дна, в первую очередь месторождений шельфа как наиболее доступных.

О масштабах этих ресурсов убедительно говорят следующие примеры. При запасах морских песков, оцениваемых триллионами тонн, ежегодная мировая добыча составляет всего лишь около 1 млрд т год. При ежегодном мировом потреблении известняков суши около 200 млн т за тот же период на дно океана осаждается 1,5 млрд т известковых илов, а их суммарные запасы составляют 1016 т. Скопления ценных минералов в россыпях береговой зоны составляют миллиарды тонн. Причем основную часть их обработки – дробление, растирание, концентрацию – «берет» на себя сама природа.

Самыми «главными» полезными ископаемыми шельфа сегодня являются нефть и газ. Следующее по значению – сырье для производства строительных материалов, добываемое ныне в огромных количествах. Объем добычи строительных материалов со дна морей составляет по некоторым оценкам не менее 45% от суммарных объемов подводной добычи полезных ископаемых. Так, к концу столетия вне пределов земной тверди ежегодно добывалось: в США около 500 млн т, в Великобритании – 200 млн т, в Японии – 70 млн т строительных материалов. В 80-х годах XX века ежегодная добыча стройматериалов из подводных месторождений в СССР достигала 20 млн т. 90% песка, добываемого в южных областях Украины (Одесская, Николаевская, Херсонская) и АР Крым для строительных целей, извлекается из-под воды путем освоения месторождений, расположенных на шельфе Черного и Азовского морей, в р. Днепр и Южный Буг, в обводненных карьерах вблизи рек.

Если учесть, что ресурсы стройматериалов на суше, особенно в промышленно развитых странах, нередко близки к истощению, то будет ясна роль морских месторождений стройматериалов в настоящее время и в ближайшем будущем.

Практически все страны с морским (а, особенно, с океанским побережьем) располагают шельфовыми месторождениями россыпных полезных ископаемых (РПИ). Особенно значительны запасы этого сырья в шельфовой зоне, примыкающей к границам таких государств как США, Канада, Япония, Великобритания, Австралия, Индонезия, Бразилия, Россия. Компании развитых в промышленном отношении стран давно и успешно ведут разработку месторождений РПИ не только у себя «дома», но и на территории стран, не имеющих своего технологического оборудования. В ряде государств подводные горные работы ведутся не один десяток лет и имеют весьма большой удельный вес в общем объеме добычных работ. Например, в годы второй мировой войны узкая полоса магнетитовых береговых россыпей обеспечивала сырьем металлургические заводы Японии. Зерна магнетита были очищены морем до такой степени, что песок был пригоден для выплавки стали, минуя стадию получения чугуна. Сейчас ведутся разработки железоносных песков из россыпи на дне Токийского залива у о. Хонсю и на дне залива Ариаке. На берегах Новой Зеландии похожие россыпи, занимающие помимо пляжа обширное мелководье, полностью обеспечивают настоящие потребности страны в стали. В Шри-Ланке добыча рутила, циркона, ильменита после их добычи возобновляется на одних и тех же местах раз в три года. США почти полностью удовлетворяют потребность промышленности в цирконе за счет подводной разработки россыпей Северной Америки, приуроченных к пляжевым и шельфовым образованиям. Из этих же россыпей добывается 50% ильменита, используемого промышленностью страны. С 1935 г. в США производится подводная добыча платины, причем со дна моря добывают более 90% этого металла. Обширные работы по разработке морских россыпей ведутся в Австралии. Россыпи содержат в большом количестве циркон, рутил, ильменит, монацит. В районе п-ва Корнуолл открыта первая в Европе касситеритовая подводная россыпь, расположенная на глубине 20–30 м. В настоящее время ведется ее разработка. В последние годы в России россыпи дают примерно 70% всей добычи золота. Причем основная часть это россыпи, отрабатываемые гидравлическим способом при помощи драг.
Земснаряд для добычи песчано-гравийных материалов с установкой для обогащения НСМ проекта 81390 (производство ОАО НПО ‘Судоремонт’, г. Нижний Новгород)

Земснаряд для добычи песчано-гравийных материалов производительностью 800–1000 м3/ч с установкой для обогащения НСМ проекта 81390 (производство ОАО НПО «Судоремонт», г. Нижний Новгород)

При современном состоянии техники и технологии подводная добыча полезных ископаемых в ряде случаев, может быть более экономичной, по сравнению с материковой. Исключение из технологического цикла буровзрывных работ, нескольких стадий дробления и некоторых других вспомогательных операций снижает себестоимость добываемых полезных ископаемых. Естественно, любое сравнение корректно при анализе конкретных горно-технических и горно-экологических условий. Но, например, многолетний опыт разработки месторождений ильменит-рутил-цирконовых песков в Австралии показал, что при гидравлической подводной добыче себестоимость получаемых концентратов в 4–6 раз ниже, чем при освоении месторождения россыпных полезных ископаемых на суше.

История развития техники для производства подводных горных работ

Появление и развитие земснарядов изначально было обусловлено необходимостью ведения гидротехнических работ. Плавучая землеройная машина с ручным приводом создана механиком Буанаюто Лорини в 1590 году в Венеции. Изобретенный им двухчелюстной грейфер, претерпев лишь небольшие изменения в конструкции, вот уже полтысячелетия продолжает служить в качестве важнейшего узла грейферного снаряда.

В России технику для производства подводных добычных работ применяют начиная с XVII века, когда ручными одночерпаковыми драгами выполнялись старательские работы на уральских и сибирских реках. Такая конструкция явилась прообразом современного штангового снаряда.

В 1718 году французским инженером де ля Бальмом разработана более сложная конструкция с двумя ковшами, приводимая в действие с помощью двух установленных на понтоне ступальных колес, движимых 16 рабочими. Впоследствии новинку великолепно справлявшуюся с тяжелым илом, наносами и каменными включениями строили и применяли повсеместно, включая Россию.

В том же 1718 г. в Голландии изобретен первый многочерпаковый плавучий снаряд с ручным приводом. В 1781 г. в Англии изготовлены первые землечерпалки с конным приводом. В 1796 г. в качестве привода многочерпакового снаряда была установлена паровая машина Уатта мощность 4 л. с. В России впервые паровой многочерпаковый снаряд был изготовлен на Ижорском заводе в 1811 г. Всасывание пульпы, т. е. смеси воды и добываемого грунта, впервые было осуществлено в 1859 г. во Франции во время дноуглубительных работ в порту Сен Назер. На р. Волге землесосы появились уже в 1874 г.

В 19-м веке земснаряды стали создаваться достаточно активно. Появились и достаточно быстро сформировались основные типы земснарядов, принципиально практически не изменившиеся и до наших дней. Приводом для исполнительных органов этих снарядов первоначально служили паровые машины, потом двигатели внутреннего сгорания и электродвигатели.

Categories: Без рубрики
8 Июн 2011

Самоходное горное оборудование (СГО) на пневмоколесном ходу – важнейший сегмент оборудования, применяемого во многих отраслях современной горно-добывающей промышленности. Появившись сравнительно недавно, всего несколько десятилетий назад, он в значительной степени изменил технологию работ, сделав ее более производительной, безопасной, экономически эффективной. На примере погрузочно-доставочных машин (ПДМ), подземных самосвалов, специального транспорта особенно ярко проявляется влияние технического прогресса на горное машиностроение.
Сегодняшний разговор – о достижениях и проблемах, связанных с СГО на пневмоколесном ходу, о тенденциях развития этого вида горной техники, о взаимоотношениях производителей и потребителей, об импорте и развитии в России собственной производственной базы и еще о многом-многом другом.

В нем принимают участие:

Владимир Антонович Чернецов, к. т. н., старший научный сотрудник горной лаборатории (ОАО «Институт «Гипроникель», ОАО «ГМК «Норильский Никель»)

ОАО «Институт «Гипроникель» – один из крупнейших научно-исследовательских и проектных институтов России. По его проектам и научно-техническим разработкам построено более 80 объектов ( в т.ч. и горных предприятий) цветной металлургии.

Вольфганг Паус, Вице-президент компании Hermann PAUS Maschinenfabrik GmbH.

Hermann PAUS Maschinenfabrik GmbH основана в 1968 году. Штаб-квартира расположена в г. Эмсбюрен (Германия). Специализируется на производстве машин и оборудования для горно-добывающей и строительной отраслей промышленности. На российском рынке с 1974 года.

Пейсаров Валерий Нисанович, руководитель проекта ООО «НПО «Автомаркет Майнинг».

ООО «НПО «Автомаркет Майнинг» (Россия) – многопрофильное предприятие, специализирующееся на разработке, производстве, поставках и внедрении современного горно-шахтного промышленного оборудования.

Витольд Поль, технический консультант представительства ООО «Бумар» (Польша).

ООО «Бумар» представляет интересы польских машиностроительных компаний. Осуществляет поставки в Россию машин и оборудования для горно-шахтной промышленности: шахтных колесных погрузчиков, вспомогательной техники, бурового инструмента, запасных частей и др.

Кузнецов Александр Владимирович, менеджер по погрузочно-доставочному оборудованию ЗАО «Атлас Копко».

ATLAS COPCO (штаб-квартира в Стокгольме) всемирно известная машиностроительная фирма, специализирующаяся на производстве компрессорной и расширительной техники, горного и строительного оборудования, пневматического и электрического инструмента. Первое представительство в Москве было открыто в 1914 году. Сегодня офисы компании работают в 30 городах России.

Categories: Без рубрики
8 Июн 2011

Грохочение – процесс классификации частиц по их геометрическому размеру. Форма частиц и удельный вес материала, из которого они состоят, могут иметь определённое значение, но в гораздо большей степени разделение зависит от размера частиц.

Технический прогресс в конструктивных решениях современных грохотов, а также разработка износоустойчивых, незабивающихся сеток сделали применение тонкого грохочения в технологических схемах обогатительных фабрик экономически целесообразным. В общем случае, мы говорим о тонком рассеве в диапазоне от 10 мм до 38 мкм (400 меш). Тонкое грохочение, как правило, осуществляется с использованием высокочастотной, низкоамплитудной вибрации сетки по линейной (возвратно-поступательной) или эллиптической траекториям. Такие – сочетающие высокие производительность и эффективность разделения – типы грохотов являются предметом рассмотрения в данной статье.

Стационарные грохоты обычно дешевле за одно устройство. Однако они имеют значительно меньшую производительность, и поэтому для достижения приемлемой эффективности разделения требуется большее количество устройств, работающих параллельно, часто, в несколько стадий. При необходимости очень точного разделения с минимальными погрешностями используют грохоты с плоскокруговым движением решетки.

Тонкое грохочение применимо как к мокрым, так и сухим процессам разделения, но механизмы разделения при этом существенно отличаются. В мокром грохочении частицы подаются на грохот в пульпе – меньшие по размеру, чем размер ячейки сита, проходят сквозь него вместе с жидкостью, и процесс разделения заканчивается на относительно небольшой длине решетки. После того, как большая часть жидкости ушла, и до того, как будет добавлена дополнительная, обеспечивающая дальнейший отсев тонких частиц жидкость, грохот работает как обычный вибрационный конвейер. В большинстве случаев, требования к оборудованию могут быть определены, исходя из удельной производительности на ширину решетки. Например – т/час/м.

Сухое грохочение в большой степени статистический процесс – по мере продвижения к концу сита частицы многократно сталкиваются с поверхностью решетки, катясь или скользя по ней. Для прохождения сквозь ячейку частица должна быть расположена точно напротив отверстия, что определяется вероятностными законами. Грохоты сухого типа требуют определенной длины сита для обеспечения приемлемой эффективности разделения, и, т. о., важным конструктивным параметром становится площадь решетки. Требования к оборудованию могут быть определены на основе удельной производительности на площадь решетки. Например – т/час/м2.

Ситовая характеристика одного или более продуктов является важной характеристикой для грохота при ряде технологических процессов. Однако не менее важна для оценки работы грохота эффективность разделения. С практической точки зрения, эффективность грохочения аналогична понятию извлечения, тогда как ситовая характеристика продукта сходна с понятием класса.

Эффективность грохочения может пониматься как доля от части питания, правильно отсеянной грохотом. По заданному классу могут быть рассчитаны три показателя эффективности: питания, подрешетного и надрешетного. Надрешетная эффективность – это доля плюсового относительно размера разделения класса в питании, полученная в надрешетном. Аналогично, подрешетная эффективность – это доля минусового относительно размера разделения класса в питании, полученного в подрешетном. Общая эффективность – это общая доля частиц, правильно рассеянных относительно их количества в питании.

Для расчета эффективности по заданному размеру разделения необходимы следующие данные:
A – % плюсового класса в питании;
B – % минусового класса в питании (100 – A);
C – % плюсового класса в надрешетном;
D – % минусового класса в подрешетном.

Разделение по массе и значения эффективности рассчитываются следующим образом:

Например, при грохочении на классе разделения 140 меш для питания, содержащего 95,9% класса – 140 меш, после грохочения ситовой анализ надрешетного показывает содержание 58,4% класса –140 меш, тогда как для подрешетного – содержание того же класса составляет 98,7%. Таким образом, А = 4,1, B = 95,9, C = 41,6, D = 98,7. Используя вышеприведенные уравнения, получаем U = 93,1, O = 6,9, EU = 95,8, EO = 70,5, и E = 94,7. В этом примере, грохот правильно рассевает примерно 95% материала.

Существует мнение, что тонкое грохочение в большей степени искусство, чем наука (Matthews 1985). В отличие от грубого грохочения, несмотря на огромное количество экспериментальных данных, разработка точной математической модели и/или справочных таблиц для тонкого грохочения были до сегодняшнего дня невозможными. Точные требования к грохоту для тонкого рассева, параметры работы, эффективности и т. д. могут быть наилучшим образом определены в результате полномасштабных испытательных грохочений представительных образцов питания. Производители грохотов, как правило, наиболее профессиональны в предоставлении рекомендаций по предварительному подбору типа грохота, а также подготовлены для проведения полномасштабных испытаний.

Мокрое тонкое грохочение

Выбор и параметры использования соответствующего грохота для мокрого рассева зависят от цели технологического процесса. Например, технологически целесообразно максимизировать надрешетную эффективность (правильное удержание плюсового класса в надрешетном) в циклах измельчения с использованием грохотов. Весь грубый, нераскрытый материал должен быть отделен грохотом и направлен обратно на измельчение. Подрешетная эффективность также важна, но процесс допускает определенное количество тонких частиц в возвращаемом продукте.

Извлечение твердого на тонком мокром грохоте является другим примером, когда надрешетная эффективность играет критическую роль. Если спецификация продукта требует минимального содержания тонких классов, подрешетная эффективность будет более важна – грохот должен отсеять практически всю тонкую фракцию из питания. В процессах обезвоживания предпочтительной будет низкая подрешетная эффективность, поскольку целью процесса является извлечение и обезвоживание возможно большего количества частиц. В каждом из приведенных примеров используются разные типы грохотов с различными рабочими параметрами.

Рассмотрим факторы, влияющие на производительность процесса при мокром рассеве. Производительность тонкого мокрого грохочения определяется как оптимальный расход питания при достижении заданных свойств продуктов. Расход питания, обычно выраженный как расход по сухому твердому (т/час), является одним из наиболее важных параметров работы грохота. Зная производительность грохота, можно рассчитать общее необходимое количество машин для достижения требуемых параметров технологического процесса в целом.

Превышение оптимальной производительности приводит к увеличению неправильного рассева частиц, а также снижает срок службы сеток. Тем не менее, с учетом других факторов, оптимальная производительность может быть несколько превышена без значительного ухудшения эффективности. Лучшим способом определения оптимальной производительности являются полномасштабные испытания процесса грохочения представительного образца питания.
Содержание твердого в питании

Как указывалось выше, частицы, тоньше размера разделения, проводятся в подрешетное пространство посредством пульповой жидкости. Таким образом, существенное влияние на эффективность грохочения оказывает плотность питания – при уменьшении содержания твердого увеличивается эффективность по подрешетному продукту. С практической точки зрения, плотность питания при примерно 20-процентном содержании твердого является разумным компромиссом в незначительной зависимости от удельного веса твердого. Так, например, наибольшая эффективность рассева силикатного песка имеет место при 45-процентном содержании твердого в питании и удельном весе твердого в 2,6 т/м3. Для минерала с удельным весом в 5,0 питание, при обеспечении достаточной эффективности, должно содержать 55% твердого.

Для увеличения эффективности рассева по подрешетному (правильное помещение частиц меньше размера разделения) пульпа питания может содержать даже меньшее количество твердого (даже 10–15% по объему). Данные испытаний показывают, что более эффективно добавлять распульповывающую жидкость в подготовку питания, нежели непосредственно распылять ее в том же количестве на решетку в процессе грохочения. Напротив, поскольку для процессов обезвоживания целью является максимальная эффективность надрешетного, питание должно подаваться на грохот с максимальной плотностью.
Ситовая характеристика

Одним из важных факторов, влияющих как на производительность, так и на эффективность мокрого рассева, является ситовая характеристика питания. Поскольку частицы меньше размера разделения должны быть проведены в подрешетное пространство – производительность грохота обычно снижается при увеличении доли таких частиц в питании. Другим важным фактором является количество частиц, близких по размеру к классу разделения. Этот класс частиц определяется как класс, больший или меньший на 2 стандартных меш-размера, чем размер разделения. Близкоразмерный класс большего размера разделения затрудняет проведение частиц в подрешетное пространство и, в отдельных случаях, приводит к забиванию сеток. При большом количестве близкоразмерного класса еще одним важным фактором является правильный выбор материала и конструкции сетки.
Ячейка сита и живое сечение (соотношение эффективной суммарной площади отверстий к общей площади сетки)

В общем случае, чем больше размер ячейки, тем выше производительность грохота. Напротив, при уменьшении размера разделения уменьшается объем питания. Например, в результате полномасштабного испытательного грохочения было определено, что производительность грохота по ячейке в 250 мкм (60 меш) составляет 100 т/час. При уменьшении ячейки до 150 мкм снижение производительности может составить 20–40%. Производительность грохочения при постоянном размере ячейки также зависит от живого сечения сетки. Иногда, для увеличения срока службы сетки, целесообразно использовать таковые с меньшим живым сечением. Однако такое решение приведет к уменьшению производительности.

Categories: Без рубрики
8 Июн 2011

Из многих видов насосов особое внимание производственников и проектировщиков привлекают пульповые насосы, работающие с материалом средней и высокой степени абразивности (в технологических линиях дробления, после мельниц первой и второй стадий измельчения, при высоконапорной транспортировке концентратов и хвостов обогатительных фабрик и т.д.). Перекачивание подобных материалов связано с относительно быстрым износом отдельных деталей пульповых насосов, их ремонтом и заменой. Эксплуатация таких насосов сопровождается большими затратами электроэнергии и требует надежного уплотнения пространства между консольной частью вала и корпусом насоса.

Характерными условиями работы современного пульпового центробежного насоса можно принять расход пульпы в пределах от 10 до 10 тысяч м3/час, напор в пределах от 10 до 100 м вод. ст. и плотность пульпы от едва превышающей плотность воды до 2,0 т/м3.

Данная статья посвящена обзору современных одноступенчатых пульповых центробежных насосов (далее – насосы), работающих с абразивными средами на предприятиях России в вышеуказанных условиях. Кратко рассмотрены насосы наиболее крупных компаний-производителей, а также отдельные технические вопросы особенностей их эксплуатации и выбора.

Современная промышленность предъявляет к насосам во многом те же требования, что и десятки лет назад. Это, прежде всего, высокая надежность, износостойкость и экономное расходование электроэнергии при эксплуатации, снижение затрат при ремонте и эксплуатации, экономическая эффективность и т.д. Вместе с тем, современные предприятия все чаще обращают внимание на то, чтобы высокая надежность и износостойкость характеризовали работу насосов во все более тяжелых условиях эксплуатации, т. е. при высоком напоре пульпы и большом расходе абразивной среды, а общее количество работающих насосов при этом уменьшалось.

В ответ на потребности рынка современные машиностроительные компании, производящие насосы, предлагают достаточно широкий ассортимент оборудования, характеризующийся определенными особенностями.

Для оценки особенностей насосного оборудования, предлагаемого российскому рынку различными компаниями, кратко перечислим отдельные характерные признаки насосов.

По пространственному расположению вала, на котором расположено рабочее колесо насоса, общепринято подразделять насосы на горизонтальные и вертикальные.
В зависимости от расположения корпуса относительно поверхности пульпы, насосы подразделяют на надводные и погружные. Отдельно выделяются полупогружные агрегаты, у которых насос располагается под уровнем пульпы, а двигатель – над ней.
Главными признаками, которые характеризуют геометрические размеры и, соответственно, номинальную производительность насосов, являются диаметры их всасывающих и нагнетательных патрубков, а также диаметр рабочего колеса. Основным признаком можно принять диаметр нагнетательного патрубка, который в настоящее время находится в пределах от 25 до 800 мм.

В настоящее время для тяжелых условий эксплуатации применяются преимущественно горизонтальные насосы. Погружные и полупогружные насосы в основном работают с пульпой, содержащей относительно небольшое количество твердых частиц (дренажные воды, взвеси металлургических предприятий и т. п.).

Насосы Бобруйского машиностроительного завода

По известным историческим причинам, самыми распространенными горизонтальными надводными насосами на предприятиях России и стран СНГ продолжаются оставаться насосы производства Бобруйского машиностроительного завода (Беларусь). Как ранее на предприятиях СССР, так и сейчас эти насосы используются как в самых легких, так и в самых тяжелых условиях эксплуатации. Например, на хвостах железорудного производства Качканарского ГОКа в течение многих лет бобруйские насосы работают на пульпе с номинальным расходом 8000 м3/час, номинальным напором 71 м вод. ст. и плотностью пульпы около 1100 кг/м3.

Бобруйский машиностроительный завод декларирует, что производимые им насосы типа ГрА, ГраУ, ГрТ и др. предназначены для перекачивания абразивных гидросмесей плотностью до 1600 кг/м3., температурой до 70°С, максимальным размером твердых включений до 25 мм и объемной концентрацией до 30%. Проточная часть может изготавливаться из сверхтвердых сплавов, абразивного материала на органической связке, резины и полиуретана.

Привлекательной чертой бобруйских насосов является их относительно низкая цена. Однако по надежности, износостойкости и эффективности они не всегда выдерживают конкуренцию лучших зарубежных аналогов.

Насосы «Weir Warman»

Одной из ведущих зарубежных компаний является группа «Веир Груп» (Weir Group) в лице своих структурных подразделений «Веир Минералз» (Weir Minerals) и «Веир Варман» (Weir Warman), поставляющая насосы конструкции «Варман» (Warman), «Эш памп» (Ash pump) и «Галигхер» (Galigher).

После приобретения англо-австралийской компании «Варман» (Warman) и ряда других приобретений, «Веир Груп» стала крупнейшим производителем насосов в мире.
Насос компании Веир Варман на пульпонасосной станции
Рис. 2. Насос компании «Веир Варман»
на пульпонасосной станции
Качканарского ГОКа

Вместе с тем еще с начала 1990-х годов англо-австралийская компания «Варман» начала активную работу на российском рынке, как через свое представительство, так и через агентские компании. За прошедшее время головной офис российского представительства этой компании находился в Хабаровске, Санкт-Петербурге и Москве.

Эта компания, например, укомплектовала насосами «Варман» золоторудное предприятие «Кубака», работающее во внутренних районах Магаданской области, Талнахскую и Норильскую обогатительные фабрики и т.д.

Отдельно следует сказать о южноафриканской компании «Си Эйч Варман» («CH Warman»), также производящую и поставляющую на российский рынок насосы конструкции «Варман».

Базовая конструкция южноафриканских и англо-австралийских насосов «Варман» идентична, а их рекламные материалы во многом похожи. Относительно низкая цена южноафриканских насосов делает их привлекательными для потребителей. Вместе с тем европейская и австралийская сборка ценятся выше, и в случае, если потребитель останавливает свой выбор на насосе «Варман», то перед ним встает проблема «цена – качество» в виде двух вариантов этого насоса.

Диапазон рабочих условий этих насосов достаточно широк. Для тяжелых условий эксплуатации из семейства насосов «Варман» предназначена модель AH с размерами всасывающего и нагнетательного патрубков до 20 и 18 дюймов соответственно и выше.

В результате научно-исследовательской работы по оптимизации конструкции и состава материалов его деталей в настоящее время компания «Веир Варман» декларирует, что

изнашиваемые части предлагаются как из твердых высокохромистых сплавов (напр., Hyperchrome® A61 и Ultrachrome® AS1), так и из различных литых эластомеров
рабочее колесо направляет внутренний поток пульпы от его стенок в сторону центра, что снижает скорость износа стенок и повышает эффективность работы насоса
новый эффективный экспеллер «Хай сил» (Hi-Seal) позволяет при определенных условиях избежать необходимости подачи воды для уплотнения сальников.

Насосы «Metso Minerals»
Полупогружной насос Метсо Минералз
Рис. 3. Полупогружной насос
«Метсо Минералз»

Крупной зарубежной компанией, производящей насосное оборудование, является «Метсо минералз» (Metso Minerals), ранее поставлявшая насосы как компания «Сведала» (Svedala). Из большого семейства шламовых насосов Metso Minerals для тяжелых условий эксплуатации предназначены насосы серии X, а для средних и легких – насосы серий H и M, которые выпускаются как с резиновой футеровкой, так и с металлической внутренней поверхностью корпуса и относятся соответственно к типам XR, XM, HR, HM, MR и MM. Насосы серии H выпускаются с диаметром всасывающего патрубка до 350–400 мм, а насосы серии Х (XM, XR), предназначенные для сверхтяжелых условий, – от 350 мм и выше. Гидравлическая конструкция насосов серии Х основана на конструкции «Томас», а насосов серии H – «Орион».

Отдельно стоит остановиться на вертикальных полупогружных насосах Metso Minerals. Эти насосы серий VT и VF хотя и работают в относительно небольшом диапазоне напоров (максимально до 45 м вод. ст.) и расходов (максимально до 1500 м3/час), но благодаря своей конструкции (длинный консольный вал, всас со стороны вала) не имеют типичного для горизонтальных насосов узла уплотнения вала и связанных с ним проблем.

Стандартные изнашиваемые детали изготавливаются из натуральной резины (Эластаслайд и др.) или твердых сплавов (Метахром, Метахард, Металсайз и др.), а также из синтетической резины и каучука. Насосами производства Metso Minerals в России укомплектованы, например, обогатительная фабрика в Нюрбинском ГОКе (АК «АЛРОСА») и обогатительная фабрика «Нелькобазолото».

Насосы «Krebs»

Крупной зарубежной насосной компанией, активно выходящей на российский рынок, является американская компания «Кребс» (Krebs), широко известная ранее только как лидер в производстве гидроциклонов. Отличительной особенностью насосов «Кребс» является новая запатентованная конструкция всасывающего участка насоса, существенно уменьшающая внутреннюю рециркуляцию внутри проточной части насоса. По данным производителя новая конструкция обеспечивает:

менее интенсивный и более равномерный износ частей проточной части
сохранение напора, развиваемого насосом, на постоянном уровне
сокращение потребления электроэнергии на 10–25%
снижение материальных и трудовых затрат на эксплуатацию и ремонт

Насос миллМАКС фирмы Кребс
Рис. 4. Насос миллМАКС фирмы Кребс
на Междуреченской обогатительной
фабрике

Насос миллМАКС компании «Кребс» имеет литой металлический корпус и металлическое рабочее колесо, насос слариМАКС – резиновую футеровку корпуса и металлическое рабочее колесо. Металлические детали изготавливаются из высокохромистых сплавов, получивших наименование Кребсаллой, резиновые – из натуральной резины. За короткий срок насосы миллМАКС получили широкое распространение на Западе. На территории России насосами «Кребс» миллМАКС укомплектована новая углеобогатительная фабрика в Междуреченске.

Насосы «Кребс» в основном предназначены для работы в тяжелых условиях эксплуатации. В средних и легких условиях вышеперечисленные достоинства конструкции не столь очевидны и обнаруживают себя не столь быстро.

Насосы «GIW»

На Западе достаточно широкое распространение имеют насосы компании «Джи Ай Дабл Ю» (GIW), являющейся в настоящее время частью компании «КСБ» (KSB). Насосы имеют широкую область применения и маркируются LCC, LCV, LSA, LSR, MEGA и WBC.

Например, насосы LCC-M этой компании имеют однокорпусную конструкцию, используют для изнашиваемых деталей высокопрочный материал Gasite, имеют размеры нагнетательного патрубка до 12 дюймов, расход до 3865 м3/час и напор до 90 м вод. ст. (подвид этих насосов LCC-H декларируется для напора до 107 м вод. ст.). Насосы LCC-R футерованы резиной, имеют размеры нагнетательного патрубка до 12 дюймов, расход до 2260 м3/час и напор до 45 м вод. ст. Возможно изготовление рабочих колес из полиуретана.

Насосы LSA на одном из предприятий в Чили работают после первой стадии измельчения с расходом до 8600 м3/час и приводом 1860 кВт.

На российском рынке насосы этой компании пока известны недостаточно широко.

Насосы других компаний

Кроме вышеназванных компаний существуют и другие, производящие насосы как для средне- и малоабразивного материала, так и для отдельных тяжелых условий.

Так, насосы компании «Хаберман» (Habermann) предназначенные для перекачки высокоабразивных шламов и песчаных частиц, маркируются NP и NPK, а для перекачки крупных, в том числе гравийных частиц до 100 и более миллиметров – KB и КВР. Материал HBN450VG, используемый для изготовления металлических деталей этих насосов, имеет твердость по Бринеллю, равную 650 единицам. Для российского рынка насосы этой компании пока не характерны. В средних по абразивности условиях эксплуатации на обогатительной фабрике «Печенганикель» успешно работают насосы финской компании «Зульцер» (Zulser), прежде производимые компанией «Альстрем» (Ahlstrom), и имеющие гидравлическую конструкцию «Селакиус».

На дренажных водах и перекачке внутри предприятий технологической воды в России и за рубежом нашли применение погружные насосы шведской компании «Флюгт» (Flygt) и немецкой «Ритс» (Ritz). Компании-производители декларируют готовность этих насосов работать с относительно плотными и абразивными пульпами.

Для российских обогатительных фабрик предлагаются также пульповые насосы западных компаний «Дамен Дреджинг» (Damen Dredging) (ориентированные ранее главным образом для работы на земснарядах) и «Флоусерв» (Flowserve), (предназначавшиеся ранее в первую очередь для работы в химической промышленности), и др.

Имеет также место производство насосов другими, относительно небольшими машиностроительными компаниями, в том числе российскими.

Привод

На многих предприятиях по-прежнему отдают предпочтение прямому муфтовому соединению вала двигателя и насоса. С этой целью, как правило, изначально подбирается двигатель с частотой вращения вала, равной числу оборотов вала насоса. Разновидностью является установка между двигателем и насосом редуктора с определенным передаточным числом, в результате чего конструкция привода несколько усложняется, количество муфт возрастает до двух, но сохраняется возможность изменять передаточное число в соответствии с изменением условий работы насоса.
Насос компании Веир Варман серии AH
Рис. 5. Насос компании «Веир Варман» серии AH для тяжелых условий эксплуатации

Улучшение качества клиноременной передачи (повышение к. п. д., увеличение прочности отдельных ремней и т.д.) делает ее все более привлекательной. При клиноременной передаче передаточное число фиксируется путем установки на валах двигателя и насоса шкивов соответствующих диаметров. Изменение передаточного числа производится путем установки новых шкивов соответствующих диаметров.

Однако при величине мощности, передаваемой от вала двигателя на вал насоса, более 350–400 кВт муфтовое соединение (прямое или через редуктор) по-прежнему является более надежным.

Все более характерной особенностью эксплуатации насосов становится использование частотно-регулируемого привода в комплекте с системой автоматизации, позволяющей поддерживать в зумпфе заданный уровень пульпы. Для контроля за уровнем пульпы в зумпфе находят применение как механические, так и ультразвуковые уровнемеры. В случае использования ЧРП и автоматической системы контроля уровня пульпы в зумпфе, предотвращающей как подсос воздуха через всас насоса, так и перелив пульпы в зумпфе, число оборотов вала двигателя и насоса всегда соответствует изменяющимся условиям перекачки, что ведет к увеличению срока эксплуатации насоса. Ввиду постепенного уменьшения стоимости использование частотных преобразователей становится для потребителей все более и более привлекательным.

Проектирование

Вопросами проектирования как отдельных насосных агрегатов, так и насосных станций, в том числе подбора насосов, привода и комплекта вспомогательного оборудования занимаются известные инжиниринговые компании, такие как «Механобр инжиниринг» (Санкт-Петербург), «Якутнипроалмаз» (Мирный), «Урал-Механобр» (Екатеринбург), «Иргиредмет» (Иркутск), «Доберсек инжиниринг» (Германия) и др. Они, как предлагают заказчику свой выбор насосов, так и идут ему навстречу при наличии у последнего определенных предпочтений.

В настоящее время компании-производители насосов зачастую самостоятельно производят предварительную инжиниринговую проработку насосных установок, включая насос, двигатель, привод и плиту основания, которую в дальнейшем необходимо только привязать к конкретным условиям.

С целью ускорения расчета насосного оборудования компании разработали программы для автоматического подбора насосов и двигателей по заданным исходным данным. Естественно, что эти программы подбирают и рекомендуют насосы своих компаний. Вместе с тем, они могут быть использованы для оценки параметров транспортирования абразивного материала, необходимой мощности двигателя и т.д.

Некоторые технические вопросы

1. Гидравлическая конструкция корпуса проточной части современных насосов исследована и проработана ведущими производителями для различных условий применения достаточно полно и глубоко. Это касается и улитообразной формы корпуса, и отношения диаметра рабочего колеса к диаметру входа в него, и отношения ширины рабочего колеса к его диаметру, и формы и размера лопаток рабочего колеса, при определении которых широко использовались компьютерное гидродинамическое моделирование и современные математические методы. Тем не менее декларируемые к. п. д. у насосов одинаковых типоразмеров у разных компаний не совпадают.

2. Наряду с улучшениями гидравлической конструкции продолжается работа по улучшению свойств материалов изнашиваемых деталей. Наибольшее распространение получили насосы с металлической внутренней поверхностью и натуральной резиновой футеровкой, но известны примеры использования полиуретана, синтетической резины и керамики. Материал металлических изнашиваемых деталей представляет собой обычно сплав железа и углерода с высоким содержанием хрома (в пределах от 23 до 30%) и различными легирующими добавками. При изготовлении подобных материалов используют вакуумное литье. В результате декларируемые величины твердости по Бринеллю достигают 750 и более. Натуральная резиновая футеровка менее прочна, но более эластична и упруга.

3. Практически все современные компании предлагают использовать не только бывшее ранее стандартным вводно-сальниковое уплотнение вала, но и экспеллерное уплотнение, осуществляемое либо отдельным дополнительным колесом, расположенным между рабочим колесом и узлом уплотнения, либо экспеллерными лопатками, расположенными на наружной стороне рабочего колеса со стороны этого же узла. Следует, однако, учитывать, что экспеллерное уплотнение эффективно действует только при относительно высокой скорости вращения вала. Используется и механическое уплотнение вала, основанное на подпружинивании уплотняющих пластин, однако его эксплуатации требует определенных условий, а стоимость относительно велика.

4. Очевидным различием является использование различными компаниями одно- и двухкорпусных конструкций насосов. Двухкорпусная конструкция позволяет сохранять наружный корпус и требует относительно частой замены относительно легкого внутреннего корпуса. В этом случае при критическом износе внутреннего корпуса внешний корпус выполняет функцию опорной структуры. Однокорпусная конструкция является более простой и требует менее частой замены более массивного корпуса, объединяющего функции изнашиваемой детали и опорной структуры.

Представляется, что в случаях значительных трудозатрат на замену корпуса, что свойственно относительно большим насосам, проще и экономически выгоднее производить более редкую замену корпуса однокорпусной конструкции. Новые разработки компаний «Метсо Минералз», «Кребс» и «Джи Ай Дабл ю» отдают предпочтение однокорпусной конструкции. Бобруйский машиностроительный завод и «Веир Варман» привержены к использованию в тяжелых условиях эксплуатации двухкорпусной конструкции.

5. Общеизвестно, что одной из главных причин, препятствующих эффективной работе центробежного насоса, является внутренняя рециркуляция пульпы. Данная рециркуляция происходит внутри корпуса насоса от нагнетательного патрубка к всасывающему через зазор между наружной поверхностью рабочего колеса и внутренней поверхностью корпуса насоса со стороны всасывающего патрубка. Во время эксплуатации этот зазор развивается как из-за общего трения, так и местного защемления отдельных частиц. В насосах компании «GIW» предусмотрена специальная конструкция внутренней поверхности корпуса насоса и наружных экспеллерных лопаток на рабочем колесе, выталкивающих твердые частицы в сторону нагнетательного патрубка и препятствующая развитию износа и рециркуляции. В насосах компании «Кребс» на всасывающем патрубке установлено специальное защитное кольцо, препятствующее развитию рециркуляции и регулируемое в процессе работы насоса (см. рис. 6).
Запатентованная система защиты от внутренней рециркуляции насосов Кребс

Рис. 6. Запатентованная система защиты от внутренней рециркуляции насосов «Кребс»

Во всех конструкциях насосов данный зазор периодически регулируют, т.к. своевременная регулировка позволяет снизить потребление электроэнергии и замедлить скорость износа отдельных частей. Стандартным способом является перемещение либо вала с рабочим колесом, либо соответствующей половины корпуса насоса навстречу друг другу во время остановки насоса. В насосах компании «Кребс» регулировка производится путем перемещения защитного кольца в процессе работы насоса.

6. Производители способны поставлять насосы для работы при высоком напоре и большом расходе абразивной пульпы. Однако при создании напора внутри одного насоса (вместо двух при их последовательном расположении) неизбежно растет скорость износа деталей. Соответственно на одном насосе изнашиваемые части приходится менять чаще, чем на двух.

Резюмируя вышеизложенное, можно отметить, что компании, производящие насосное оборудование, предлагают современным предприятиям достаточно широкий выбор насосов с различными техническими характеристиками, прочностью изнашиваемых частей и способами регулировки.

Предварительный выбор нескольких типов насосов различных компаний с необходимыми техническими показателями и анализ их предложений по гарантируемым срокам эксплуатации изнашиваемых деталей насоса и экономическим показателям позволяет предприятиям-заказчикам избежать просчетов при решении столь ответственного вопроса.

Categories: Без рубрики
8 Июн 2011

Сегодня уже большинство причастных к сооружению дорожных объектов пришло к осознанию того, что уплотнение является если не основной или главной, то по крайней мере ключевой технологической операцией по своей значимости и влиянию на эффективность вкладываемых средств, на качество, надежность и долговечность всего дорожного сооружения.

Теперь никого из россиян не удивляет многочисленность (более двух десятков) фирм-производителей уплотняющей техники и широкое многообразие выпускаемых ими разного рода, типа и размера катков, трамбовок и виброплит. Причем многие из этих фирм, особенно те из них, кого можно причислить к законодателям высокотехнологических разработок (Bomag, Caterpillar, Dynapac, Hamm, Ingersoll-Rand и др.) и к основным поставщикам уплотняющей техники на мировой рынок, непрерывно совершенствуют свою продукцию, обновляя ежегодно до 30–40 % выпускаемых моделей машин и установок.

Некоторые из таких усовершенствований порой носят косметический характер, другие улучшают условия пребывания и работы машиниста в кабине катка, третьи облегчают и упрощают сам рабочий процесс уплотнения (например, прозрачная часть пола в кабине для наблюдения за поверхностью вальца во время укатки горячего асфальтобетона; подсветка боковых кромок вальца при работе катка вдоль бордюра или подпорных стенок в темное время суток; поворотные и поднимающиеся выше кабины для улучшения обзорности машиниста и т.д., и т.п.).
Виброкаток BW225 В-3 BVC фирмы Bomag
Рис. 1. Виброкаток BW225 В-3 BVC
фирмы Bomag для эффективного уплотнения
связных и других разновидностей грунтов

Однако периодически появляются и более серьезные новинки функционально-технологического характера, направленные на повышение качества и производительности операции уплотнения тех или иных материалов. Такие разработки заслуживают не только особого внимания дорожников, но и всестороннего анализа и оценки их полезности, эффективности и возможности использования в российских условиях.

Автору довелось побывать на двух последних крупнейших мировых выставках строительных и дорожных машин и оборудования в немецком Мюнхене (2004 г.) и американском Лас-Вегасе (2005 г.) и познакомиться с рядом «умных», интересных и полезных новых разработок, предназначенных для уплотнения грунтов, щебеночных материалов и асфальтобетонных смесей.

Как и положено при строительстве автомобильной дороги, логично начать с новинок для уплотнения грунтов земляного полотна. Фирма Bomag (Германия) создала для этих целей оригинальный крупный виброкаток BW225 D-3 BVC (Bomag VarioControl) с многогранной поверхностью вальца (рис. 1, 2). Последний имеет три, очевидно, сваренных в единый широкий валец восьмисегментных или восьмигранных кольца, которые смещены (повернуты) относительно друг друга на половину длины одного сегмента. В результате на вальце катка находится 24 ровных (плоских) площадки с гранями. При качении такого вальца статические и динамические воздействия на грунт передаются площадками и гранями [1].
Сегментный валец нового виброкатка BW225 D-3 BVC фирмы Bomag.
Рис. 2. Сегментный валец нового виброкатка
BW225 D-3 BVC фирмы Bomag

В мировой дорожной практике уже были подобные сегментные статические катки, на гладкой поверхности вальцов которых шарнирно крепились отдельные плоские площадки (сегменты), передававшие силу веса катка уплотняемому грунту. Таким способом пытались увеличить незначительную толщину слоя, уплотняемого гладковальцовым катком, и снизить чрезмерную сдвиговую волну на поверхности укатки. Как известно, по этим причинам гладковальцовые статические катки практически не используются на уплотнении грунтов земляного полотна.

В связи с новинкой фирмы Bomag полезно вспомнить и давнишний трамбующий каток с квадратным вальцом из Южной Африки (рис. 3), который при перекатывании с грани на грань опрокидывался на большую плоскую площадку, производя всей своей массой ударное нагружение грунта с хорошим результатом уплотнения.
Рис. 3. Формы рабочей поверхности вальцов грунтоуплотняющих катков
Рис. 3. Формы рабочей поверхности
вальцов грунтоуплотняющих катков:
1 – обычная цилиндрическая;
2 – восьмисегментная или восьмигранная
(фирма Bomag);
3 – квадратная (Южная Африка)

Производственное использование одновальцового грунтового виброкатка BW225 D-3 BVC с многогранной или сегментной формой поверхности вальца осуществлялось на трех объектах в Германии при возведении насыпей из различных типов и состояний грунтов, включая связные глинистые и скальноподобные мергелисто-сланцевые – на подъездной железной дороге к аэропорту, автомобильной дороге А38 и крупной промышленной площадке (объем грунта 450 тыс. м3).

В частности, на строительстве автомобильной дороги, для которой требования к качеству уплотнения грунтов наиболее жесткие в Германии (степень уплотнения по Проктору не ниже 97 %, а несущая способность земляного полотна при штамповых динамических испытаниях не менее 45 МН/м2), были получены удивительные результаты. На связном глинистом грунте степень уплотнения 98,2 % была зафиксирована на глубине около 1,0 м. Причем для этого потребовалось всего 4–5 проходов этого катка с новой формой вальца.

Разработчики новинки объясняют достигнутый эффективный или даже эффектный результат, которого никто в мире еще не получал при использовании катков на глинистых грунтах, различием в контактной передаче динамических давлений вальца такого катка уплотняемому грунту. При большей площади контакта плоского сегмента этого вальца с поверхностью укатки «луковица» (термин из механики грунтов) давлений в грунте заметно больше, чем под цилиндрическим вальцом (рис. 4).
Луковица давлений в грунте
Рис. 4. «Луковица» давлений в грунте
под цилиндрическим и сегментным вальцами

Действительно, в механике грунтов есть такое понятие как «глубина активной зоны» ha, в которой реализуется до 85 % появившейся на поверхности грунтового основания деформации или осадки, а остальные примерно 15 % приходятся на слои грунта, расположенные ниже глубины этой активной зоны вплоть до (3,5–4,0) dш или bо, где dш (или bо) – диаметр (или меньшая сторона) подошвы штампа или рабочего органа уплотняющей машины (основание виброплиты или вибротрамбовки, шина, валец гладкий, кулачковый, решетчатый, сегментный, ребристый, подошва трамбующей плиты).

В теории и технологии уплотнения различных дорожно-строительных материалов практическим путем получены универсальные результаты и зависимости, отраженные на графике рис. 5. Из него следует, что предельная толщина грунта или иного материала, прорабатываемого до требуемой степени уплотнения, или предельная глубина активной зоны ha зависит в основном от трех факторов – характера нагрузки (статическая, вибрационная или, точнее, виброударная, чисто ударная), размера контактной площадки (dш или bо), передающей усилия уплотнения грунту, и, наконец, от соотношения контактных давлений рабочего органа уплотняющей машины или устройства и предела прочности на сжатие уплотняемого грунта.

Правда, есть еще четвертый фактор влияния – количество циклов нагружения уплотняющей нагрузкой. Как правило, практически полная реализация потенциальных возможностей катка повышать плотность материала происходит примерно за 8–10 проходов при условии, что его давления будут близки прочностным показателям материала. При снижении контактных давлений катка количество потребных его проходов прогрессивно возрастает с одновременным снижением глубины проработки, т.е. нехватку силовых воздействий можно лишь частично компенсировать количеством проходов или циклов нагружения. А это не всегда технологически доступно и экономически выгодно, как например, при уплотнении горячих асфальтобетонных смесей.
Рис. 5. Зависимость глубины активной зоны от контактных давлений
Рис. 5. Зависимость глубины активной зоны ha в относительных единицах (толщина уплотняемого слоя) от контактных давлений в относительных единицах и характера уплотняющих нагрузок

Из приведенного графика следует, что даже при большой контактной площадке с малым контактным давлением можно получить незначительную глубину требуемого уплотнения. И наоборот, тот же не очень удовлетворительный результат будет при малой контактной площадке и высоком давлении. И уж совсем плохим он окажется при малой контактной площадке и низком давлении, так как в этом случае сработает известный эффект вытоптанной пешеходами дорожки на лужайке парка или на городском газоне.

Разработчики виброкатка BW225 D-3 BVC с сегментной поверхностью вальца, видимо, вольно или невольно использовали научные наработки для решения актуальной практической задачи и нашли удачное сочетание размера подошвы сегмента (очевидно около 600–700 мм) и высоких контактных динамических давлений вальца, воплотив старую идею в новое исполнение.

При весе вибровальцового модуля этого катка 17,6 т и центробежной силе 40,2 тс максимальные контактные его давления на грунт должны ориентировочно составить около 9–10 (грунт рыхлый) и 15–16 кгс/см2 (плотный), что вполне приемлемо для высококачественного уплотнения связного грунта и на достаточно солидную глубину.

Вообще же все до сих пор известные типы и разновидности дорожных грунтовых катков, при создании которых решались отдельные или комплексные задачи по повышению качества и толщины слоя уплотнения за счет увеличения силового давления и размеров контактной площадки с одновременным снижением сдвиговых смещений (волн) приповерхностной зоны укатки, наиболее характерных для тяжелых катков с гладкими вальцами, можно выстроить в один логический ряд с учетом последовательности их появления:

гладковальцовый статический;
кулачковый (sheep foot) статический
кулачковый (pad foot) статический, в том числе фирм Caterpillar, Bomag и Dynapac, с трамбующим эффектом (за счет скоростной укатки);
сегментный статический;
решетчатый статический;
ребристый статический;
гладковальцовый вибрационный (точнее, вибро- или частоударный);
кулачковый (pad foot) вибрационный;
сегментный или многогранный (многоплощадочный) вибрационный фирмы Bomag;
трамбующий с квадратным вальцом (Южная Африка).

Не исключено появление в этом ряду в соответствии с упомянутыми принципами и логикой и других новых разработок. Тем более, что большинство фирм находится в постоянном поиске, стремясь придать своим грунтоуплотняющим каткам больше технологической универсальности, повысить качественную сторону их работы путем более широкого регулирования уплотняющих воздействий, в том числе в автоматическом режиме, оснастить специальными устройствами и даже системами контроля качества уплотнения грунта.

Такие поиски приводят к некоторой модернизации существующих моделей грунтовых виброкатков, сводящейся к незначительному изменению их веса, повышению амплитуды и уточнению частоты колебаний вальца, разные сочетания которых дают в конечном итоге самое главное для уплотняющей способности виброкатка – амплитудное значение центробежной силы и ее качественную характеристику («острая» или «тупая», быстродействующая или вялодействующая вибросила).

Относительно изменения весовых показателей катков можно отметить, в частности, появление самого тяжелого на сегодня виброкатка BW226 фирмы Bomag, одна из модификаций которого имеет общий вес почти 27 т вместе с самым тяжелым вибровальцовым модулем (18,6 т).

Кстати, иногда вызывает удивление уже устоявшаяся практика для одновальцовых шарнирно-сочлененных виброкатков приводить в технической литературе совместный вес вибровальцового модуля и пневмоколесного тягача-толкача. Ведь не добавляют же к весу прицепного виброкатка вес тягача. Тем более, что в функционально-технологическом плане «главным действующим лицом» являются вес, габариты и другие показатели вибромодуля (вибровальца), которые и определяют его уплотняющую способность и эффективность. А весовые данные тягача для этих показателей в том и другом случае не играют роли.
Самая крупная модель катка фирмы Bomag BW226.
Самая крупная модель катка фирмы Bomag – BW226

Помимо некоторой прибавки в весе у отдельных катков возросло также максимальное значение центробежной силы, как, например, у самой крупной модели фирмы Bomag до появления BW226 она была 33 тс, а у последней – 40 тс. Правда, «чемпионами мира» пока остаются шарнирно-сочлененные образцы VV2510D фирмы STS (Stavostroj) и SR25D фирмы O+K (Orenstein and Koppel), у которых такая сила составляет 46 тс.

В последнее время специалисты ряда фирм осознали не только полезность, но уже даже и необходимость более широкого регулирования силовых воздействий виброкатков на уплотняемый материал. На большинстве же имеющихся сейчас в мире их моделей используется двухуровневая вибрация.

Слабый или сильный режим вибрирования устанавливается путем увеличения или уменьшения амплитуды колебаний вальца в 2 раза при реверсе вращения дебалансного вала.

На заре внедрения уплотняющей вибротехники в широкую практику дорожного строительства такая разработка фирмы Dynapac была очень полезной и прогрессивной. Это теперь двухрежимная вибрация стала явно недостаточной для технологии уплотнения материалов различного типа и состояния, да еще при значительном варьировании толщин уплотняемых слоев этих материалов.

И совершенно очевидно закономерным и оправданным стало появление виброкатков фирмы I-R (Ingersoll-Rand, США) с 8 амплитудами и двумя частотами колебаний вальца (вместе со статическим режимом можно получить 17 значений силовых воздействий – куда уж больше!?). Теперь уже есть виброкатки с 3,4 или 5 амплитудами при одной, двух и даже трех частотах колебаний вальца (фирма Caterpillar). Однако во многих подобных разработках использован принцип дискретного регулирования уплотняющих воздействий.

Разработчиком одного из способов плавного регулирования силовых воздействий виброкатков стала фирма Bomag, заменившая на своих асфальтобетонных (BW174 АD-2, BW184 AD-2) и грунтовых (например, BW177 D-4) просто устроенные вибровозбудители с круговыми колебаниями на более сложные подобные устройства с направленными колебаниями.

Обусловлено это новшество не различием в эффективности и качестве уплотнения материалов при их использовании (экспериментально давно показано, что особого различия нет), а возможностью у катков или вальцов с направленными колебаниями плавно изменять (поворачивать) направление вектора суммарной центробежной силы от 0 до 90°, т.е. регулировать значение вертикальной ее составляющей от нуля до максимума, плавно переводя колебания вальца с чисто вертикальных до сугубо горизонтальных. Такой способ давно применяется на виброплитах для обеспечения их самоходности с одновременным выполнением самой операции уплотнения.

Наличие возможности дискретно или плавно изменять центробежную силу вибровальца в большую или меньшую сторону, а также наличие успешно и давно работающих систем и приборов контроля качества уплотнения грунтов по относительным (косвенным) показателям, которыми оснащены виброкатки фирм Dynapac, Bomag, Hamm и других, очевидно, и породило идею и дало толчок к их объединению с разработкой новой системы автоматического регулирования силовых воздействий в соответствии с показаниями приборов, контролирующих качество уплотнения.

Такие новые разработки были осуществлены фирмами Bomag и Ammann и установлены на образцах не только грунтовых, но и асфальтобетонных виброкатков.

Следует отметить, что автоматическая система, например, фирмы Bomag, названная для асфальтобетонных виброкатков ВАМ (Bomag Asphalt Manager) или просто Асфальт Менеджер, включает в себя несколько других систем и подсистем, среди которых фигурируют ВТМ-Е (Bomag Terra Meter E) – измеритель модуля деформации грунта Е, ВЕМ (Bomag Evib Meter)– измеритель вибрационного модуля деформации Evib поверхности уплотняемого материала, ВСМ 05 (Bomag Compation Menegement 2005 г.)– управление уплотнением, разработка 2005 г. и другие.

Система Асфальт Менеджер позволяет непрерывно контролировать качество уплотнения материала, правда, в косвенных показателях (вибрационный или динамический модуль деформации Evib в МН/м2). Фактически впервые оказалось возможным следить за относительным результатом уплотнения асфальтобетона во время его укладки и укатки в покрытии (на земляных работах такое случилось ранее) и заблаговременно выявлять недоуплотненные места и участки. При этом непременным условием эффективного функционирования системы является непрерывное измерение температуры асфальтобетона, но не только.

Машинист катка с такой системой имеет возможность вмешиваться в автоматический процесс уплотнения, если температура асфальтобетонной смеси окажется очень высокой или чрезмерно низкой. Как автоматика, так и машинист в подобных случаях могут изменять силовое вибровоздействие катка, регулируя величину вертикальной составляющей центробежной силы путем поворота ее вектора, а в нужном случае даже просто отключать вибрацию вообще.

На первых виброкатках Bomag с Асфальт Менеджер (BW170/174 AD AM и BW184 AD AM) установлены вибровозбудители с более высокой уплотняющей способностью. Наиболее крупная модель из этих трех имеет повышенную частоту (60 Гц) при неизменной амплитуде колебаний. Но на всех трех виброкатках предусмотрен дополнительный повышенный режим силового воздействия за счет увеличения амплитуды колебаний только заднего вальца. Это запасное более мощное воздействие (в 1,5–4 раза сильнее) иногда требуется на практике для уплотнения, например, слишком остывшего асфальтобетонного материала.
Грунтовый одновальцовый шарнирно-сочлененный каток AC110 (фирмы Ammann)
Грунтовый одновальцовый шарнирно-сочлененный каток AC110 (фирмы Ammann) оборудован электронной контрольно-измерительной системой АСЕ

На выставке Bauma-2004 в Мюнхене фирма Ammann рекламировала два новых виброкатка, оснащенных подобной электронной контрольно-измерительной системой, названной АСЕ (Ammann Compaction Expert)– грунтовый одновальцовый шарнирно-сочлененный АС110 – 3HD+ACE (общий вес 11,2 т, вес вибромодуля 7,2 т, регулирование амплитуды плавное от 0 до 2 мм, частоты колебаний в пределах 25–33 Гц, центробежной силы от 0 до 250 кН или 25 тс и рабочей скорости в пределах 0–7 км/ч) и асфальтобетонный тандем AV95ACE (вес 9,5 т, амплитуда колебаний от 0 до 1 мм, частота от 0 до 50 Гц, центробежная сила от 0 до 85 кН или до 8,5 тс и рабочая скорость от 0 до 10 км/ч).

Система АСЕ на асфальтобетонном виброкатке автоматически настраивает амплитуду и частоту в соответствии с установленной рабочей скоростью катка, температурой поверхности асфальтобетона (непрерывно измеряется устройством инфракрасного типа), прочностными и деформативными характеристиками поверхности укатки (Ammann утверждает, что АСЕ оценивает ее несущую способность, но почему-то с размерностью МН/м).

Принцип управления АСЕ состоит в том, что энергия уплотнения автоматически понижается при возрастании несущей способности поверхности укатки. Подобным же образом зоны или места с пониженными показателями несущей способности уплотняются с более высокой, а очень твердые (жесткие) поверхности – с более низкой рабочей амплитудой. Регулирование амплитуды осуществляется автоматически за счет поворота одного центробежного эксцентрика относительно другого, установленных в вибровозбудителе направленных колебаний. Сама система АСЕ установлена в переднем или заднем вальцовом модуле. Вибрирование другого вальца происходит по автоматическим командам вальцового модуля с АСЕ.

Что дает использование передовой технологии уплотнения виброкатками, оборудованными системами Асфальт Менеджер, АСЕ или им подобными?

Во-первых, требуемое качество уплотнения материала достигается всегда, причем оно становится более равномерным по площади с отсутствием недоуплотненных и переуплотненных мест потому, что энергия уплотнения виброкатка всегда приводится в соответствие с потребностями материала. Во-вторых, практическое выполнение операции становится более легким и простым, а ошибки оператора или машиниста катка исключаются потому, что вибрационный режим укатки контролирует автоматика. В-третьих, экономятся затраты времени и энергоресурсов потому, что количество проходов катка минимизируется, а это может дать повышение производительности до 2 раз (оценка фирмы Bomag).

Новые идеи и разработки не обошли стороной и американских производителей дорожных катков. На выставке в Лас-Вегасе фирма Bomag Americas представила две модификации одного и того же виброкатка четвертого поколения, одну из которых BW190AD-4HF (вес около 12 т, амплитуда колебаний 0,37/0,86 мм, частоты соответственно 60/48 Гц и центробежные силы 13,1/18,6тс) можно отнести к обычным высокочастотным моделям. А другую (BW190AD-4AM), оснащенную системой Asphalt Manager, можно зачислить в отряд новых образцов «умного уплотнения» (Intelligent Compaction).

Помимо этих виброкатков Bomag Americas показала также три новые свои разработки (BW266, BW278 и BW284 весового класса соответственно 9, 11 и 13т), отличительной особенностью которых является чрезмерно высокая величина центробежной силы как на слабой (13–15 тс), так и на сильной (15–19 тс) вибрации.

Не совсем понятно, как такими мощными виброударными воздействиями можно качественно уплотнять рекомендуемые Bomag Americas слои асфальтобетона толщиной от 1,5 до 3 дюймов (от 3,5–4 до 7,5–8 см)?

В соответствии с оценкой уплотняющей способности по статическим и динамическим индексам контактных давлений оптимальные слои для эффективного уплотнения асфальтобетона этими катками составляют от 10–12 до 14–15 см на слабом режиме вибрирования вальцов, а на сильном – еще больше (от 14–15 до 17–19 см). Очевидно, самым соответствующим слоям 1,5–3 дюйма может оказаться только статический режим укатки, для которого оптимальные толщины слоев равны 6–7,5 см.

Вообще же у каждого статического или вибрационного катка, наделенного разработчиками определенными геометрическими, весовыми и вибрационными параметрами, существуют вполне конкретные оптимальные толщины уплотняемых слоев асфальтобетона, щебня или грунта.

Если реальный слой уплотнения меньше оптимального, его приповерхностная зона будет подвергаться силовым перегрузкам катком, что непременно приведет к частичному ее разуплотнению или даже разрушению (рис. 6). Если реальный слой больше оптимального, пострадает нижняя его часть, где будет иметь место недоуплотнение.

Рис. 6. Схема возможных результатов уплотнения асфальтобетона при несовпадении толщин оптимального и реального слоев

Рис. 6. Схема возможных результатов уплотнения асфальтобетона при несовпадении толщин оптимального и реального слоев:
hопт – оптимальный слой уплотнения;
h0 – реальный слой.

По разработанной в фирме «ВАД» методологии (индексы контактных давлений) оптимальную толщину слоя уплотнения для любого виброкатка определить несложно. Следует только знать параметры виброкатка и прочностные и деформативные свойства уплотняемого материала.

В качестве примера в табл. 1 даны найденные таким способом значения оптимальных слоев уплотняемого щебенистого асфальтобетона теми виброкатками, которыми располагает парк фирмы «ВАД» и с помощью которых осуществляется каждодневная практическая реализация технологии высококачественного уплотнения асфальтобетонного покрытия.

Categories: Без рубрики
8 Июн 2011

Ежегодно с использованием лома черных металлов в мире выплавляется 350 млн т стали (т. е. каждую третью тонну). Спрос на него постоянно растет: в 1998 г. было утилизировано 235 млн т, в прошлом, 2005 году, почти 300 млн т на сумму 60 млрд долларов, а в 2010 году, по прогнозам, будет переработано 360–390 млн т. Особенно выгодным использование металлического лома становится на фоне значительного увеличения цен на железную руду. Рост интереса к нему обусловлен ускоренным развитием составной части металлургического комплекса – электрометаллургии – наиболее экологически чистого способа получения металла. Ее доля в общем объеме производства черных металлов в среднем по миру достигла 30%, в США этот показатель составляет 45%, странах ЕС в среднем – 40% (но в ряде европейских государств он существенно выше: в Германии – 50%, а в Норвегии – все 100%); в Японии – 25%. В России в электропечах выплавляется примерно 15% стали (меньше, чем в мартеновских).

По абсолютному производству электростали наша страна, находясь почти на уровне Германии, Индии и Италии, заметно уступает США, Китаю, Японии и Южной Корее. Но уже в ближайшие несколько лет Россия должна вплотную приблизиться к среднемировым показателям по удельному весу стали, получаемой электрическим способом, что приведет к росту внутреннего спроса на металлолом.

 

Три источника

Существует несколько источников образования лома черных металлов. В первую очередь, это отходы, образующиеся в процессе производства металла (в РФ около 10 млн т ежегодно) и при его потреблении в металлообработке и строительстве (4–5 млн т). Значимым ресурсом является т.н. амортизационный лом, т.е. металл, накапливаемый в зданиях, сооружениях, промышленном оборудовании, транспортных средствах и прочих составляющих основных фондов, часть из которых в силу естественных причин постоянно выбывает из эксплуатации, пополняя ресурсную базу переработчиков вторичного сырья (12–15 млн т в год).

Впрочем, цифры достаточно условные, и не все эксперты с ними согласны. Так, по одним оценкам объем металлофонда России, составляя около 1,5 млрд т, соизмерим с американским. А как известно, США – ломоперерабатывающая держава № 1, ежегодно там собирается и перерабатывается 55–60 млн т лома черных металлов. В России же эти показатели почти вдвое меньше (30 млн т в год), что позволяет сделать вывод о значительных резервах отечественного рынка и дать оптимистичный прогноз относительно увеличения объемов переработки в ближайшем будущем (до 40–45 млн т к 2010 году, из которых 30 млн т будут востребованы на внутреннем рынке, а 10–15 млн вывезены за пределы России). Но по другим оценкам из-за сокращения внутреннего потребления металла металлофонд в России уменьшается, и ее нынешние устойчивые позиции среди ведущих экспортеров металлического лома могут оказаться под угрозой.

 

Мировая торговля скрапом

Ежегодно государственные границы пересекают десятки миллионов тонн лома стоимостью 15–20 млрд долларов. Траектория его движения заметно отличается от присущей большинству других сырьевых товаров, обычно стремящихся с бедных Юга и Востока в богатые Север и Запад. Напротив, главными экспортерами лома являются экономически развитые государства (Япония, Россия, Украина, США, Франция, Великобритания), а среди импортеров немало стран, еще недавно относившихся к т.н. «третьему миру» (Китай, Тайвань, Турция, Южная Корея, Индия).

Именно активно наращивающие выплавку электростали молодые экономики сравнительно недавно вставших на путь индустриализации, а потому не успевших накопить значительного металлофонда азиатских государств предопределяют быстро растущий (в натуральном исчислении в 1,5, а в денежном в 2,5 раза за последние 10 лет) объем мировой торговли ломом черных металлов, в то время как индустриальные государства, крайне медленно увеличивающие собственное производство металлургической продукции, но зато накопившие за многие десятилетия огромные металлофонды (США, Япония, западно европейские страны), продолжают укреплять свои позиции среди экспортеров, конвертируя в банковские счета свое славное экономическое прошлое.

Для российских ломопереработчиков главным рынком сбыта остается Турция, на которую приходится более трети всех поставок. Второе по важности направление – юг Западной Европы – Испания, Греция, Италия – вместе почти 25%. На восточном направлении главные потребители – Китай и Корея – вместе 16%.

Объем российского импорта незначителен (менее 1% внутреннего потребления) и потому не оказывает заметного влияния на российский рынок. Хотя в последнее время наблюдается его ускоренный рост. В марте 2006 г. импорт металлолома удвоился, вдвое обогнав суммарное увеличение поставок (общий рост поставок лома составил 47%). Основные направления ввоза – Казахстан и Украина.

Categories: Без рубрики
8 Июн 2011

Свайные фундаменты были и остаются одним из наиболее надежных видов фундаментов для многоэтажных зданий. Их использование позволяет значительно расширить площади земель, пригодных для возведения капитальных сооружений. Но при всех своих положительных качествах они имеют ряд недостатков. И один из основных – высокая стоимость сооружения фундамента. Так, стоимость одной 12 метровой сваи с учетом доставки и забивки составляет 7650 рублей.

Для постройки типового шестиподъездного девятиэтажного дома их требуется до тысячи штук, а на некоторых грунтах и больше. Соответственно, примерная стоимость свайного основания фундамента составляет около 8 млн рублей. Очень велик и расход металла – 80 кг на 1 м2 площади застройки. В случае применения свай на площадях с большой мощностью насыпных грунтов возникают свои проблемы. В пониженной части оврагов под слоем насыпных грунтов естественные грунты обычно насыщены водой, и их несущая способность в качестве основания очень низка. В таких условиях приходится применять очень длинные сваи, что, естественно, приводит к усложнению производства работ и к значительному удорожанию строительства.

С каждым годом в городах России становится все меньше участков земли, пригодных для строительства зданий и сооружений. Все наиболее удачные участки уже давным-давно застроены, и новое строительство приходится вести в неблагоприятных инженерно-геологических условиях – преимущественно на низкокачественных просадочных грунтах, отличающихся повышенной водонасыщенностью и наличием карстовых образований. Поверхностный слой такого грунта толщиной до 10 м не пригоден для использования в качестве грунтового основания.

Просадочные грунты встречаются на всех континентах, но наиболее широко они распространены в Европе, Азии и Америке. На территории стран СНГ ими сложено 34% континентальной части. Довольно часто они встречаются в Белоруссии, Поволжье, Якутии, занимают большие площади в Средней Азии, Казахстане, Восточной, Южной и Западной Сибири. Наиболее неблагополучны в смысле просадочности обширные районы Северного Кавказа и Украины (до 80% всей территории). В Новосибирске, например, практически все Левобережье стоит на просадочном грунте.

Улучшить качество грунтового основания под фундамент можно путем глубокого ударного трамбования, которое приводит к коренному изменению микроструктуры грунта. В результате устраняются его просадочные свойства и склонность к водонасыщению и уплотненный грунт приобретает прочность, достаточную для восприятия весовых нагрузок тяжелых зданий. Все это позволяет рассматривать устройство фундаментов зданий и сооружений на уплотненном грунте как вариант замены свайных фундаментов.

Технология строительства на предварительно утрамбованном грунте разработана в России около 30 лет назад. За прошедший период с ее использованием построены десятки многоэтажных зданий, подтверждена ее надежность, разработана необходимая нормативно-техническая документация.
Агрегат для глубокого трамбования грунта

Но несмотря на очевидные преимущества, степень распространения упомянутой технологии в строительстве до настоящего времени остается совершенно недостаточной. Объясняется это тем, что до сих пор трамбование грунта выполняется копрами с падающими трамбовками. Для получения требуемых технических показателей массу трамбовок доводят до 7–10 т при высоте бросания от 10 до 15 метров. Копры таких размеров громоздки, маломобильны, отличаются крайне низкой рабочей частотой и, следовательно, малой производительностью, и поэтому не могут конкурировать с традиционными сваебойными копрами.

При этом, взаимодействие падающей трамбовки с грунтом имеет прерывистый характер. Грунт максимально нагружается в момент падения трамбовки на поверхность и полностью разгружается в момент отрыва и последующего подъема трамбовки. При разгрузке предварительно сжатый грунт упруго восстанавливается, вследствие чего значительно снижается степень его уплотнения за один рабочий цикл. Кроме того, усилие отрыва трамбовки от грунта значительно превосходит ее вес, что сопровождается дополнительными затратами энергии.

Сделать технологию строительства на предварительно утрамбованном грунте более востребованной призван агрегат, разработанный учеными Института гидродинамики СО РАН и его конструкторско-технологического филиала.

В предлагаемом агрегате взамен падающей трамбовки применена погружаемая в грунт тонкостенная оболочка с встроенным в нее гидропневматическим молотом с энергией удара до 100 кДж и рабочей частотой до 20 уд./мин. Тонкостенная оболочка имеет форму усеченного конуса высотой 3 м с диаметром нижнего основания 0,5 м, верхнего – 0,9 м. Во внутренней полости гидропневматического молота с возможностью продольного возвратно-поступательного движения расположен ударник, который под действием сжатого газа совершает рабочий ход со скоростью до 10 м/с.

В конце рабочего хода ударник наносит удар по нижнему основанию оболочки через специальный буфер, который, с одной стороны, ограничивает величину ударного импульса, предохраняя оболочку от разрушения, с другой стороны – в десятки раз по сравнению с жестким ударом увеличивает время ударного воздействия на грунт. Посредством указанного буфера длительность ударных импульсов может регулироваться в широком диапазоне. Благодаря этому можно подобрать оптимальные режимы трамбования грунтов с различными свойствами, что благоприятно сказывается на эффективности технологического процесса.

В момент удара на оболочку действует продольное усилие величиной около 500 тонн. Под действием этого усилия оболочка перемещается относительно корпуса, внедряясь в грунт. После удара гидромолот под действием собственного веса следует за оболочкой, опираясь на предусмотренный в ней опорный бурт. Полное погружение оболочки в грунт достигается после 80–150 ударов.

Гидромолот приводится в действие от гидросистемы экскаватора. Давление жидкости во время взвода ударника около 15 МПа (150 кг/см2). Средняя величина погружения оболочки в грунт за 1 удар на строительных площадках города Новосибирска составляла около 30 мм. При этом погружение оболочки на полную глубину продолжается около 5 минут. В результате в грунте образуется котлован соответствующей формы и глубины. После извлечения оболочки из указанного котлована она стрелой экскаватора переводится в следующую позицию.

В отличие от падающей трамбовки оболочка агрегата во время трамбования постоянно удерживает грунт в напряженном состоянии, что обеспечивает высокую эффективность процесса трамбования при снижении затрат энергии. Процесс подготовки грунтового основания с его использованием выглядит следующим образом. На предварительно спланированной поверхности строительной площадки в узлах принятой координатной сетки с шагом 1,7–2,0 м вытрамбовываются котлованы заданной формы и глубины. Образованные котлованы заполняются гравием, бетоном или тем же грунтом с трамбуемой строительной площадки и дополнительно подтрамбовываются за 2–3 перехода. В результате на 20–30% увеличивается плотность, изменяется структура и в 2–2,5 раза возрастает несущая способность грунта.
Агрегат для глубокого трамбования грунта

Расстояние между соседними узлами координатной сетки выбирается таким образом для того, чтобы в результате трамбования на глубине 4–5 м образовывалась сплошная подушка уплотненного грунта с улучшенными свойствами.

За рабочую смену (8 часов) данным агрегатом вытрамбовывается до 30 котлованов. Для фундамента типового 6-подъездного 9-этажного жилого дома вытрамбовывается около 500 котлованов, на что затрачивается до 15–20 рабочих смен.

Агрегат в виде единственного опытного образца в течение 6 лет эксплуатируется на строительных площадках г. Новосибирска. На дешевых ленточных фундаментах мелкого заложения, возведенных на предварительно улучшенном с применением агрегата грунте, уже построено свыше десяти многоэтажных (до 17 этажей) жилых домов. Все указанные дома располагаются в плотно застроенных жилых массивах в центре города на участках, ранее считавшихся непригодными для строительства. Например, 17-этажный жилой дом возведен в пойме реки Каменки на площадке, сложенной насыпными грунтами мощностью 11–12 м, образовавшимися от засыпки оврага, кроме того, под слоем грунтов залегала супесь, насыщенная водой, пластичной и текучей консистенции.

Проведенный на всех домах мониторинг показал хорошие результаты — осадки равномерные и не превышают предельно допустимых по СНиП 2.02.01-83 «Основания зданий и сооружений». Все построенные здания не имеют дефектов и эксплуатируются нормально.

Высота агрегата трамбования в 3 раза меньше высоты существующих копров, поэтому к месту работы такая машина транспортируется в собранном виде. По сравнению с копровыми установками за одно и то же время он совершает в 10 раз больше ударных импульсов и имеет, по существу, во столько же раз большую производительность. При таких технических показателях агрегат трамбования может успешно конкурировать с существующим сваебойным оборудованием, что, наконец, позволит вытеснить из строительства глубоко заложенные свайные фундаменты и заменить их на мелко заложенные ленточные или столбчато-ленточные.

При этом достигается весьма значительный экономический эффект. Суммарная стоимость нулевого цикла уменьшается в 2–3 раза, расход цемента сокращается вполовину, расход арматурной стали – в 3 раза, а энергозатраты – на 30%. Кроме того, в 2–3 раза уменьшается сейсмическое воздействие на окружающую среду, практически полностью устраняются вредные выбросы в атмосферу. Появляется возможность производства работ в непосредственной близости от жилых и промышленных зданий в условиях точечной застройки плотно заселенных городских районов.

До настоящего времени созданный в Институте гидродинамики агрегат трамбования остается пионерной разработкой и не имеет аналогов как в России, так и за рубежом. Основные конструктивные решения агрегата защищены четырьмя патентами России. Подана заявка на пятый патент, призванный защитить конструкцию усовершенствованного устройства.

Необходимо добавить, что область применения агрегата трамбования не ограничивается строительной площадкой, он может успешно использоваться для уплотнения насыпного грунта при строительстве дорог, взлетно-посадочных полос аэродромов, дамб и других сооружений.

Применение данного агрегата позволит со значительной экономией оборудовать опоры линий электропередач и контактной сети железных дорог. В настоящее время для замены одной опоры контактной сети на железной дороге требуется вначале пробурить скважину, затем установить в нее дорогостоящий бетонный стакан и только потом уже ставить саму опору.

Процесс отличается высокой трудоемкостью и требует длительных перерывов в движении поездов. С применением новой технологии в грунте с помощью агрегата вытрамбовываются котлованы, в которые непосредственно без стакана устанавливаются опоры. В этом случае стоимость и трудоемкость опоры, а также время, затрачиваемое на ее установку, уменьшаются в 2–3 раза. Агрегат базируется на железнодорожной платформе, и для его доставки к месту производства работ не требуется дополнительной дороги.

Categories: Без рубрики
8 Июн 2011
Страница 1 из 212